Skip to main content

Flat-Panel CT and the Future of OR Imaging and Navigation

  • Chapter
  • First Online:
Imaging and Visualization in The Modern Operating Room

Abstract

The development of minimally invasive techniques and rapid progress in surgery require integration of advanced imaging capabilities into operating theaters. The setup of a fixed imaging system in an operating theatre where interventional and open procedures can be combined is called a hybrid operating room (OR).

The loss of natural three-dimensional (3D) vision and tactile sensing in minimally invasive surgery necessitate advanced imaging and visualization techniques. The network of different imaging modalities to visualize structures underneath the surface and navigate surgical instruments is an advantage of this new concept. A thorough understanding of current and future technology is necessary to create hybrid ORs supporting established and upcoming workflows.

Before planning a hybrid OR, a clear vision for intended use in a given hospital setting should be established. Commonly, hybrid ORs are designed for interdisciplinary usage by interventionalists, surgeons, and anesthesiologists. The multitude of requirements determines necessary resources such as location, space, and imaging equipment. Intraoperative 3D cross-sectional imaging based on cone-beam computed tomography (CBCT) evolves as an important imaging modality enabling the operator to navigate safely and efficiently based on the actual anatomy. Fusion imaging integrating preoperative imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI) allows the use of comprehensive guidance of interventional or surgical procedures. Real-time imaging of the anatomy in 3D and overlay with endoscopy or ultrasound allows precision in highly complex procedures. With the trend towards integrated approaches to disease management, the hybrid OR will become an integral part of interdisciplinary therapy in all surgical centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.ihf-fih.org/content/download/1933/18009/file/Lueder%20F. Clausdorff.pdf.

  2. Bonatti J, Vassiliades T, Nifong W, Jakob H, Erbel R, Fosse E, Werkkala K, Sutlic Z, Bartel T, Friedrich G, Kiaii B. How to build a cath-lab operating room. Heart Surg Forum. 2007;10:E344–8 (Accessed 14 April 2014).

    Article  PubMed  Google Scholar 

  3. Nollert G, Wich S. Planning a cardiovascular hybrid OR—the technical point of view. Heart Surg Forum. 2008;12:E125–30.

    Article  Google Scholar 

  4. Ten Cate G, Fosse E, Hol PK, Samset E, Bock RW, McKinsey JF, Pearce BJ, Lothert M. Integrating surgery and radiology in one suite: a multicenter study. J Vasc Surg. 2004;40:494–9.

    Article  PubMed  Google Scholar 

  5. http://www.intechopen.com/books/special-topics-in-cardiac-surgery/the-hybrid-operating-room. Accessed 14 April 2014.

  6. Tomaszewski R. Planning a better operating room suite: design and implementation strategies for success. Perioper Nursing Clin. 2008;3:43–54.

    Article  Google Scholar 

  7. Kalender W, Kyriakou Y. Flat-detector computed tomography (FD-CT). Eur Radiol. 2007;17:2767–79.

    Article  PubMed  Google Scholar 

  8. Strobel N, Meissner O, Boese J, Brunner T, Heigl B, Hoheisel M, Lauritsch G, Nagel M, Pfister M, Rührnschopf EP. Medical radiology, 3D imaging with flat-detector C-arm systems. In: Reiser MF, Takahashi M, Modic M, Becker CR, editors. Multislice CT. Heidelberg: Springer; 2009. p. 33–51.

    Chapter  Google Scholar 

  9. Biasi L, Ali T, Ratnam LA, Morgan R, Loftus I, Thompson M. Intra-operative DynaCT improves technical success of endovascular repair of abdominal aortic aneurysms. J Vasc Surg. 2009;49:288–95.

    Article  PubMed  Google Scholar 

  10. Nozaki T, Iida H, Morii A, Fujiuchi Y, Komiya A, Fuse H. Efficacy of laparoendoscopic single-site biopsy for diagnosis of retroperitoneal tumor of unknown origin. Urol Int. 2013;90(1):95–100.

    Article  PubMed  Google Scholar 

  11. ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication. Ann. ICRP. 2007;103(37):2–4.

    Google Scholar 

  12. Cusma JT, Bell MR, Wondrow MA, Taubel JP, Holmes DR. Real-time measurement of radiation exposure to patients during diagnostic coronary angiography and percutaneous interventional procedures. J Am Coll Cardiol. 1999;33:427–35.

    Article  CAS  PubMed  Google Scholar 

  13. Balter S, Hopewell JW, Miller DL, Wagner LK, Zelefsky MJ. Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair. Radiology. 2010;254:326–41.

    Article  PubMed  Google Scholar 

  14. http://venturebeat.com/2012/07/25/valves-gabe-newell-talks/.

  15. Ruppert GC, Reis LO, Amorim PH, de Moraes TF, da Silva JV. Touchless gesture user interface for interactive image visualization in urological surgery. World J Urol. 2012;30(5):687–91.

    Article  PubMed  Google Scholar 

  16. http://techland.time.com/2012/12/10/touchscreens-and-the-myth-of-windows-8-gorilla-arm/.

  17. http://en.wikipedia.org/wiki/Skeuomorph. Accessed 14 April 2014.

  18. Atkins MS, Tien G, Khan RS, Meneghetti A, Zheng B. What do surgeons see: capturing and synchronizing eye gaze for surgery applications. Surg Innov. 2013;20(3):241–8. http://techland.time.com/2012/12/10/touchscreens-and-the-myth-of-windows-8-gorilla-arm/.

    Article  PubMed  Google Scholar 

  19. Kenngott HG, Wagner M, Gondan M, Nickel F, Nolden M, Fetzer A, Weitz J, Fischer L, Speidel S, Meinzer HP, Böckler D, Büchler MW, Müller-Stich BP. Real-time image guidance in laparoscopic liver surgery: first clinical experience with a guidance system based on intraoperative CT imaging. Surg Endosc. 2014;28(3):933–40. doi: 10.1007/s00464-013-3249-0. Epub 2013 Nov 1.

    Google Scholar 

  20. Oktay O, Zhang L, Mansi T, Mountney P, Mewes P, Nicolau S, Soler L, Chefd’hotel C. Biomechanically driven registration of pre- to intra-operative 3D images for laparoscopic surgery. Med Image Comput Comput Assist Interv. 2013;16(PT2):1–9.

    PubMed  Google Scholar 

  21. Figueroa Garcia I, Peyrat J-M, Hamarneh G, Abugharbieh R. Biomechanical kidney model for predicting tumor displacement in the presence of external pressure load. ISBI 2014.

    Google Scholar 

  22. Gelalis ID, Paschos NK, Pakos EE, Politis AN, Amatoutoglou CM, Karageorgos AC, Ploumis A, Xenakis TA. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigations techniques. Eur Spine J. 2012;21(2):247–55.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Luther N, Iorgulescu JB, Geanette C, Gebhard H, Saleh T, Tsiouris AJ, Haertl R. Comparison of navigated versus non-navigated pedicle screw placement in 260 patients and 1434 screws; screw accuracy, screw size and the complexity of surgery. J Spinal Disord Tech. 2013. Nov 6. [Epub ahead of print].

    Google Scholar 

  24. Hughes-Hallett A, Mayer EK, Marcus HJ, Cundy TP, Pratt PJ, Darzi AW, Vale JA. Augmented reality partial nephrectomy: examining the current status and future perspectives. Urology. 2014;83(2):266–73.

    Article  PubMed  Google Scholar 

  25. Stoyanov D, Scarzanella MV, Pratt P, Yang G-Z. Real-time stereo reconstruction in robotically assisted minimally invasive surgery, in Medical Image Computing and Computer-Assisted Intervention MICCAI 2010. (Jiang T, Navab N, Pluim JPW, Viergever MA, editor.), no. 6361 in Lecture Notes in Computer Science, pp. 275–82, Springer, Berlin, Heidelberg, Jan 2010.

    Google Scholar 

  26. Teber D, Guven S, Simpfendrfer T, Baumhauer M, Gven EO, Yencilek F, Gzen S, Rassweiler J. Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol. 2009;56(2):332–8.

    Article  PubMed  Google Scholar 

  27. Sadik K, Kell M, Gorey T. Minimally invasive parathyroidectomy using surgical sonography. Int J Med Sci. 2011;8(4):283–6.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Guidelines for the Use of Laparoscopic Ultrasound. Society of American Gastrointestinal and Endoscopic Surgeons. http://www.sagecms.org.

  29. Ren J, Marchlinski F, Callans D, Herrmann H. Clinical use of AcuNav diagnostic ultrasound catheter imaging during left heart radiofrequency ablation and transcatheter closure procedures. J Am Soc Echocardiogr. 2002;15(10 Pt 2):1301–8.

    Article  PubMed  Google Scholar 

  30. Sharma P. et al. Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of a multi-center prospective international randomized controlled trial. GIE, 2011.

    Google Scholar 

  31. Thiberville L, et al. Human in-vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. Eur Respir J. 2009;33(5):974–85.

    Article  CAS  PubMed  Google Scholar 

  32. Liu J, et al. Dynamic real-time microscopy of the urinary tract using confocal laser endomicroscopy. Urology. 2011;78(1):225–31.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Konda VJA, et al. A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscoscopy under endosonographic guidance. Endoscopy. 2013;45(12):1006–13.

    Article  PubMed  Google Scholar 

Further Reading

  • Sikkink CJ, Reijnen MM, Zeebregts CJ. The creation of the optimal dedicated endovascular suite. Eur J Vasc Endovasc Surg. 2008;35:198–204.

    Article  CAS  PubMed  Google Scholar 

  • Tsagakis K, Konorza T, Dohle DS, Kottenberg E, Buck T, Thielmann M, Erbel R, Jakob H. Hybrid operating room concept for combined diagnostics, intervention and surgery in acute type A dissection. Eur J Cardiothorac Surg. 2013;43:397–404.

    Article  PubMed  Google Scholar 

  • Kpodonu J. Hybrid cardiovascular suite: the operating room of the future. J Card Surg. 2010;25:704–9.

    Article  PubMed  Google Scholar 

  • Brozzi NA, Roselli EE. Endovascular therapy for thoracic aortic aneurysms: state of the art in 2012. Curr Treat Options Cardiovasc Med. 2012;14:149–63.

    Article  PubMed  Google Scholar 

  • Reed AB. Advances in the endovascular management of acute injury. Perspect Vasc Surg Endovasc Ther. 2011;23:58–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Schwabenland MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwabenland, I. et al. (2015). Flat-Panel CT and the Future of OR Imaging and Navigation. In: Fong, Y., Giulianotti, P., Lewis, J., Groot Koerkamp, B., Reiner, T. (eds) Imaging and Visualization in The Modern Operating Room. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2326-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2326-7_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2325-0

  • Online ISBN: 978-1-4939-2326-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics