Skip to main content

Role of Mitogen-Activated Protein Kinase Cascade in Combating Abiotic Stress in Plants

  • Chapter
Elucidation of Abiotic Stress Signaling in Plants

Abstract

Plants being sessile have to counter a plethora of stresses, both biotic and abiotic in order to grow and survive. The ability of plants to perceive these stresses at the cell surface and transduce them to the nucleus for appropriate cellular readjustment is one of the most sophisticated mechanisms they have developed during the process of evolution. Among several cascades helping in signal transduction, mitogen-activated protein kinase (MAPK) cascade is one of the most important cascades that is ubiquitously present in all eukaryotes. This unique protein cascade is also involved in several developmental and vital processes in plants. This is essentially a phosphorelay cascade consisting of three components, a MAPK kinase kinase (MAPKKK/MAP3K/MEKK/MKKK), a MAPK kinase (MAPKK/MAP2K/MEK/MKK), and a MAPK (MPK) connected to each other by the event of phosphorylation. All these components of MAPK cascade are multigene family and are involved in efficient transmission of specific stimuli in response to stress signaling. In the present chapter, we will highlight the involvement of different members of this phosphorelay cascade during abiotic stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal PK, Gupta K, Jha B (2010) Molecular characterization of the Salicornia brachiata SbMAPKK gene and its expression by abiotic stress. Mol Biol Rep 37:981–986

    CAS  PubMed  Google Scholar 

  • Agrawal GK, Rakwal R, Iwahashi H (2002) Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophys Res Commun 294:1009–1016

    CAS  PubMed  Google Scholar 

  • Agrawal GK, Rakwal R (2006) Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spectrom Rev 25:1–53

    CAS  PubMed  Google Scholar 

  • Ahlfors R, Macioszek V, Rudd J, Brosché M, Schlichting R, Scheel D, Kangasjärvi J (2004) Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J 40:512–522

    CAS  PubMed  Google Scholar 

  • Bae MS, Cho EJ, Choi EY, Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36:652–663

    CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Battisti D (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    CAS  PubMed  Google Scholar 

  • Bergmann DC, Lukowitz W, Somerville CR (2004) Stomatal development and pattern controlled by a MAPKK kinase. Science 304:1494–1497

    CAS  PubMed  Google Scholar 

  • Blanco FA, Zanetti ME, Casalongué CA, Daleo GR (2006) Molecular characterization of a potato MAP kinase transcriptionally regulated by multiple environmental stresses. Plant Physiol Biochem 44:315–322

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    CAS  PubMed  Google Scholar 

  • Cobb MH, Goldsmith EJ (1995) How MAP kinases are regulated. J Biol Chem 270:14843–14846

    CAS  PubMed  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    CAS  PubMed  Google Scholar 

  • Cooper B, Clarke JD, Budworth P, Kreps J et al (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci U S A 100:4945–4950

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cuypers A, Smeets K, Vangronsveld J (2009) Heavy metal stress in plants. In: Hirt H (ed) Plant stress biology: from genomics to systems biology. Wiley-VCH, Weinheim, pp 161–178

    Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32(1):40–52

    CAS  PubMed  Google Scholar 

  • del Pozo O, Pedley KF, Martin GB (2004) MAPKKK alpha is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23:3072–3082

    PubMed Central  PubMed  Google Scholar 

  • Ding X, Richter T, Chen M, Fujii H, Seo YS, Xie M, Zheng X, Kanrar S, Stevenson RA, Dardick C, Li Y, Jiang H, Zhang Y, Yu F, Bartley LE, Chem M, Bart R, Chen X, Zhu L, Farmerie WG, Gribskov M, Zhu JK, Fromm ME, Ronald PC, Song W-N (2009) A rice kinase-protein interaction map. Plant Physiol 149:1478–1492

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dóczi R, Okrész L, Romero AE, Paccanaro A, Bögre L (2012) Exploring the evolutionary path of plant MAPK networks. Trends Plant Sci 17:1360–1385

    Google Scholar 

  • Doczi R, Brader G, Pettko-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H (2007) The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19:3266–3279

    PubMed Central  CAS  PubMed  Google Scholar 

  • Droillard MJ, Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett 574:42–48

    CAS  PubMed  Google Scholar 

  • Duerr B, Gawlenowski M, Ropp T, Jacobs T (1993) MsERK1: A mitogen-activated protein kinase from a flowering plant. Plant Cell 5:87–96

    PubMed Central  CAS  PubMed  Google Scholar 

  • Evrard A, Kumar M, Lecourieux D, Lucks J, von Koskull-Doring P, Hirt H (2013) Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. Peer J 1:e59

    PubMed Central  PubMed  Google Scholar 

  • Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci U S A 98:373–378

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H (2005) A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol 46:1902–1914

    CAS  PubMed  Google Scholar 

  • Gray JJ (2006) High resolution protein-protein docking. Curr Opin Struct Biol 16:183–193

    CAS  PubMed  Google Scholar 

  • Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208

    CAS  PubMed  Google Scholar 

  • Hamel LP, Nicole MC, Duplessis S, Ellis BE (2012) Mitogen-activated protein kinase signaling in plant- interacting fungi: distinct messages from conserved messengers. Plant Cell 24:1327–1351

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J et al (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11:192–198

    CAS  PubMed  Google Scholar 

  • Hauser MT, Aufsatz W, Jonak C, Luschnig C (2011) Transgenerational epigenetic inheritance in plants. Biochim Biophys Acta 1809:459–468

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hirt H (ed) (2000) Results and problems in cell differentiation: map kinases in plant signal transduction. Springer, Heidelberg

    Google Scholar 

  • Holley SR et al (2003) Convergence of signaling pathways induced by systemin, oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen-activated protein kinases in Lycopersicon peruvianum suspension-cultured cells. Plant Physiol 132:1728–1738

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    PubMed  Google Scholar 

  • Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221–233

    CAS  PubMed  Google Scholar 

  • Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K (2006) MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J Biol Chem 281:36969–36976

    CAS  PubMed  Google Scholar 

  • Ichimura K, Mizoguchi T, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K (1998) Isolation of ATMEKK1 (a MAP kinase kinase kinase)—interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. Biochem Biophys Res Commun 253:532–543

    CAS  PubMed  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    CAS  PubMed  Google Scholar 

  • Jagadish S, Muthurajan R, Oane R, Wheeler T, Heuer S, Bennett J, Craufurd P (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61:143–156

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jonak C, Heberle-Bors E, Hirt H (1994) MAP kinases: universal multipurpose signalling tools. Plant Mol Biol 24:407–416

    CAS  PubMed  Google Scholar 

  • Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci U S A 93:11274–11279

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jonak C, Ligterink W, Hirt H (1999) MAP kinases in plant signal transduction. Cell Mol Life Sci 55:204–213

    CAS  PubMed  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jonak C, Okresz L, Bogre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424

    CAS  PubMed  Google Scholar 

  • Joshi RK, Kar B, Nayak S (2011) Characterization of mitogen activated protein kinases (MAPKs) in the Curcuma longa expressed sequence tag database. Bioinformation 7:180–183

    PubMed Central  PubMed  Google Scholar 

  • Kang S, Chen S, Dai S (2010) Proteomics characteristics of rice leaves in response to environmental factors. Front Biol 5:246–254

    CAS  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    CAS  PubMed  Google Scholar 

  • Kim SH, Woo DH, Kim JM, Lee SY, Chung WS, Moon YH (2011) Arabidopsis MKK4 mediates osmotic-stress response via its regulation of MPK3 activity. Biochem Biophys Res Commun 412:150–154

    CAS  PubMed  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krysan PJ, Jester PJ, Gottwald JR, Sussman MR (2002) An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell 14:1109–1120

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar K, Sinha AK (2013) Over expression of constitutively active mitogen activated protein kinase kinase 6 enhances tolerance to salt stress in rice. Rice 6(1):25

    PubMed  Google Scholar 

  • Kumar K, Rao KP, Sharma P, Sinha AK (2008) Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol Biochem 46:891–897

    CAS  PubMed  Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, New York

    Google Scholar 

  • Lee JS, Wang S, Sritubtim S, Chen JG, Ellis BE (2009) Arabidopsis mitogen-activated protein kinase MPK12 interacts with the MAPK phosphatase IBR5 and regulates auxin signaling. Plant J 57:975–985

    CAS  PubMed  Google Scholar 

  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu X-Y, Cui X, Jin H, Zhu J-K (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post transcriptionally to promote drought resistance. Plant Cell 20:2238–2251

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin C-J, Li C-Y, Lin S-K, Yang F-H, Huang J-J, Liu Y-H, Lur H-S (2010) Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). J Agric Food Chem 58:10545–10552

    CAS  PubMed  Google Scholar 

  • Lin SK, Chang MC, Tsai YG, Lur HS (2005) Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5:2140–2156

    CAS  PubMed  Google Scholar 

  • Link V, Sinha AK, Vasistha P, Hofmann MG, Proels RK, Ehness R, Roitsch T (2002) Activation of a MAPK by heat in tomato cell suspension cultures. FEBS Lett 531(2):179–183

    CAS  PubMed  Google Scholar 

  • Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS, Kim HS, Kim SH, Park HC, Yun DJ, Chung WS (2010) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71:614–618

    CAS  PubMed  Google Scholar 

  • Liu XM, Nguyen XC, Kim KE, Han HJ, Yoo J, Lee K, Kim MC, Yun D-J, Chung WS (2013) Phosphorylation of the zinc finger transcriptional regulator ZAT6 by MPK6 regulates Arabidopsis seed germination under salt and osmotic stress. Biochem Biophys Res Commun 430:1054–1059

    CAS  PubMed  Google Scholar 

  • Lukowitz W, Roeder A, Parmenter D, Somerville C (2004) A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116:109–119

    CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  PubMed  Google Scholar 

  • Mann M, Pandey A (2001) Use of mass spectrometry-derived data to annotate nucleotide and protein sequence databases. Trends Biochem Sci 26:54–61

    CAS  PubMed  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    CAS  PubMed  Google Scholar 

  • MAPK Group (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Google Scholar 

  • Melikant B, Giuliani C, Halbmayer-Watzina S, Limmongkon A, Heberle-Bors E, Wilson C (2004) The Arabidopsis thaliana MEK AtMKK6 activates the MAP kinase AtMPK13. FEBS Lett 576:5–8

    CAS  PubMed  Google Scholar 

  • Meszaros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L, Rios G, BardÓczy V, Teige M, Koncz C, Peck S, Bögre L (2006) The Arabidopsis MAP kinase kinaseMKK1participates in defense responses to the bacterial elicitor flagellin. Plant J 48:485–498

    CAS  PubMed  Google Scholar 

  • Miles GP, Samuel MA, Zhang Y, Ellis BE (2005) RNA interference-based (RNAi) suppression of AtMPK6, an Arabidopsis mitogen-activated protein kinase, results in hypersensitivity to ozone and misregulation of AtMPK3. Environ Pollut 138:230–237

    CAS  PubMed  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    CAS  PubMed  Google Scholar 

  • Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452:55–68

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    CAS  PubMed  Google Scholar 

  • Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A 93:765–769

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morris PC (2001) MAP kinase signal transduction pathways in plants. New Phytol 151:67–89

    CAS  Google Scholar 

  • Munnik T, Ligterink W, Meskiene I, Calderini O, Beyerly J, Musgrave A, Hirt H (1999) Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyperosmotic stress. Plant J 20:381–388

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Murakami-Kojima M, Nakamichi N, Yamashino T, Mizuno T (2002) Plant Cell Physiol 43:675–683

    CAS  PubMed  Google Scholar 

  • Nakagami H, Kiegerl S, Hirt H (2004) OMTK1, a novel MAPKKK, channels oxidative stress signaling through direct MAPK interaction. J Biol Chem 279:26959–26966

    CAS  PubMed  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10:339–346

    CAS  PubMed  Google Scholar 

  • Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H (2006) A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281:38697–38704

    CAS  PubMed  Google Scholar 

  • Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890

    PubMed Central  CAS  PubMed  Google Scholar 

  • Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012) Mitogen-activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13:7828–7853

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ortiz-Masia D, Perez-Amador MA, Carbonell J, Marcote MJ (2007) Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. FEBS Lett 581:1834–1840

    CAS  PubMed  Google Scholar 

  • Ortiz-Masia D, Perez-Amador MA, Carbonell P, Carbonell AF, Marcote MJ (2008) Characterization of PsMPK2, the first C1 subgroup MAP kinase from pea (Pisum sativum L.). Planta 227:1333–1342

    CAS  PubMed  Google Scholar 

  • Peck SC (2005) Update on proteomics in Arabidopsis. Plant Physiol 138:591–599

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101:9971–9975

    PubMed Central  CAS  PubMed  Google Scholar 

  • Persak H, Pitzschke A (2013) Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PLoS One 8:e57547

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pitzschke A, Djamei A, Bitton F, Hirt H (2009) A major role of the MEKK1-MKK1/2-MPK4 pathway in ROS signalling. Mol Plant 2:120–137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Sign 8:1757–1764

    CAS  Google Scholar 

  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar SP (2009) MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 23:80–92

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rao KP, Richa T, Kumar K, Raghuram B, Sinha AK (2010) In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res 17:139–153

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rao KP, Vani G, Kumar K, Wankhede DP, Misra M, Gupta M, Sinha AK (2011) Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 506:73–82

    CAS  PubMed  Google Scholar 

  • Rasmussen MW, Roux M, Petersen M, Mundy J (2012) MAP kinase cascades in Arabidopsis innate immunity. Front Plant Sci 3:169

    PubMed Central  PubMed  Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 6:621–649

    Google Scholar 

  • Ruttens A, Boulet J, Weyens N, Smeets K, Adriaensen K, Meers E, van Slycken S, Tack F, Meiresonne L, Thewys T, Witters N, Carleer R, Dupae J, Vangronsveld J (2011) Short rotation coppice culture of willow and poplar as energy crops on metal contaminated agricultural soils. Int J Phytoremediation 13:194–207

    PubMed  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    CAS  PubMed  Google Scholar 

  • Å amajová O, Plíhal O, Al-Yousif M, Hirt H, Å amaj J (2013) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv 31:118–128

    PubMed  Google Scholar 

  • Sangwan V, Orvar BL, Beyerly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J 31(5):629–638

    CAS  PubMed  Google Scholar 

  • Sheikh AH, Ara H, Sinha AK (2012) Mitogen activated protein kinases: A hunt for their physiological substrates in plants. Plant Stress 6:37–42

    Google Scholar 

  • Shi J, An HL, Zhang L, Gao Z, Guo XQ (2010) GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development. Plant Mol Biol 74:1–17

    CAS  PubMed  Google Scholar 

  • Shi J, Zhang L, An H, Wu C, Guo X (2011) GhMPK16, a novel stress-responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity. BMC Mol Biol 12:22

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    CAS  PubMed  Google Scholar 

  • Singh R, Lee MO, Lee JE, Choi J, Park JH, Kim EH, Yoo RH, Cho JI, Jeon J-S, Rakwal R, Agrawal GK, Moon JS, Jwa N-S (2012) Rice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system. Plant Physiol 160:477–488

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signalling in plants under abiotic stress. Plant Signal Behav 6:196–203

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smékalová V, Doskocˇilová A, Komis G, Å amaj J (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 32(1):2–11

    PubMed  Google Scholar 

  • Stafstrom JP, Altschuler M, Anderson DH (1993) Molecular cloning and expression of a MAP kinase homologue from pea. Plant Mol Biol 22:83–90

    CAS  PubMed  Google Scholar 

  • Stratmann J (2003) Ultraviolet-B radiation co-opts defense signaling pathways. Trends Plant Sci 8:526–533

    CAS  PubMed  Google Scholar 

  • Taj G, Agarwal P, Grant M, Kumar A (2010) MAPK machinery in plants: Recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav 5:1370–1378

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Maruyama K, Yamaguchi-Shinozaki K, Shinozakia K (2007) The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    CAS  PubMed  Google Scholar 

  • Tena G, Asai T, Chiu WL, Sheen J (2001) Plant mitogen activated protein kinase signaling cascades. Curr Opin Plant Biol 4:392–400

    CAS  PubMed  Google Scholar 

  • Ulm R, Ichimura K, Mizoguchi T, Peck SC, Zhu T, Wang X, Shinozaki K, Paszkowski J (2002) Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J 21:6483–6493

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang JX, Ding HD, Zhang A, Ma FF, Cao JM, Jiang MY (2010) A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J Integr Plant Biol 52:442–452

    CAS  PubMed  Google Scholar 

  • Wankhede DP, Kundan K, Singh P, Sinha AK (2013a) Involvement of mitogen activated protein kinase kinase 6 in UV induced transcripts accumulation of genes in phytoalexin biosynthesis in rice. Rice 6(1):35

    PubMed  Google Scholar 

  • Wankhede DP, Misra M, Singh P, Sinha AK (2013b) Rice mitogen activated protein kinase kinase and mitogen activated protein kinase interaction network revealed by in-silico docking and yeast two-hybrid approaches. PLoS One 8:e65011. doi:10.1371/journal.pone.0065011

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell Signaling during cold, drought, and salt stress. Plant Cell S:165–183

    Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yeh CM, Chien PS, Huang HJ (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58:659–671

    CAS  PubMed  Google Scholar 

  • Yeh CM, Hsiao LJ, Huang HJ (2004) Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice. Plant Cell Physiol 45:1306–1312

    CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signaling. Nature 451:789–795

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang AY, Jiang MY, Zhang JH, Tan MP, Hu XL (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141:475–487

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zong XJ, Li DP, Gu LK, Li DQ, Liu LX, Hu XL (2009) Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta 229:485–495

    CAS  PubMed  Google Scholar 

  • Zou J, Liu C, Chen X (2011) Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant Cell Rep 30:2155–2165

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

H.A. thanks the Department of Science and Technology, Govt. of India, for Women Scientist Grant. The research AKS lab is supported by grants from the Department of Biotechnology, Govt. of India, and the Department of Science and Technology, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Krishna Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ara, H., Sinha, A.K. (2015). Role of Mitogen-Activated Protein Kinase Cascade in Combating Abiotic Stress in Plants. In: Pandey, G. (eds) Elucidation of Abiotic Stress Signaling in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2211-6_8

Download citation

Publish with us

Policies and ethics