Assessments of Carbon Stock Hotspots in Nicaragua and Costa Rica

  • Moritz S. Schmid
  • Andrew P. Baltensperger
  • Jordan Grigor
  • Falk Huettmann
Chapter

Abstract

Climate change is negatively affecting tropical regions through increasing temperatures and decreased precipitation leading to changes in local hydrology and decreasing water supply among others. In order to make accurate future predictions of carbon stock and forest health it is necessary to better understand the current underlying baseline carbon stock and how it may vary across space. Here we adapted an existing carbon stock assessment method and applied it to two tropical regions in Nicaragua and Costa Rica managed by the Maderas Rainforest Conservancy. Carbon stock was calculated based on 1) above-ground tree biomass, 2) above-ground sapling biomass, 3) leaf litter, herb and grass biomass, 4) soil organic carbon, 5) below-ground biomass, 6) stumps and deadwood and 7) regenerating plants. Our results show a strata-pooled average of 234.09 ± 379 Mg C ha-1 (n=40) carbon at the Costa Rican site and 209.20 ± 216 Mg C ha-1 (n=40) at the Nicaraguan site. These values are much higher than those available on a biome-wide scale, highlighting the extent of carbon stock loss outside these study areas as a result of anthropogenic disturbances, in comparison to more pristine areas. Local investigations into carbon stocks in the tropics are necessary to better estimate the current state of carbon content in the tropics. By adapting existing sampling protocols to local conditions this can be achieved efficiently. Furthermore, local estimates of carbon stock enable non-governmental organizations (NGOs) to participate in the Reducing Emissions from Deforestation and forest Degradation (REDD) program led by the United Nations.

Keywords

REDD Carbon hotspots Climate change GHG emissions Tropics 

References

  1. Achard F, Eva HD, Mayaux P, Stibig H-J, Belward A (2004) Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Glob Biogeochem Cycles 18(2):GB2008CrossRefGoogle Scholar
  2. ANSAB (2011) Report on forest carbon stock of community forests in three watersheds (Ludikhola, Kayarkhola and Charnawati). ANSAB, ICIMOD, FECOFUN, KathmanduGoogle Scholar
  3. Arroyo-Mora J P, Sánchez-Azofeifa GA, Kalacska ME, Rivard B, Calvo-Alvarado JC, Janzen DH (2005) Secondary forest detection in a neotropical dry forest landscape using Landsat 7 ETM + and IKONOS imagery. Biotropica 37(4):497–507CrossRefGoogle Scholar
  4. Avnery S, Dull RA, Keitt TH (2011) Human versus climatic influences on late-Holocene fire regimes in southwestern Nicaragua. Holocene 21(4):699–706CrossRefGoogle Scholar
  5. Barluenga M, Meyer A (2004) The Midas cichlid species complex: incipient sympatric speciation in Nicaraguan cichlid fishes? Mol Ecol 13:2061–2076PubMedCrossRefGoogle Scholar
  6. Basu P (2009) A green investment. If growing forests in India can generate lucrative carbon credits, then why isn’t everyone planting trees? News feature. Nature 457(8):144–146PubMedCrossRefGoogle Scholar
  7. Berg Å Ehnström B Gustafsson L Hallingbäck T Jonsell M Weslien J (1994) Threatened plant, animal, and fungus species in Swedish forests: distribution and habitat associations. Conserv Biol 8(3):718–731CrossRefGoogle Scholar
  8. Beyer HL (2012) Geospatial Modelling Environment (Version 0.6.0.0). (software). http://www.spatialecology.com/gme. Accessed 2 Apr 2013
  9. Bezanson M (2009) Life history and locomotion in Cebus capucinus and Alouatta palliata. Am J Phys Anthropol 140:508–517PubMedCrossRefGoogle Scholar
  10. Bezanson M (2012) The ontogeny of prehensile-tail use in Cebus capucinus and Alouatta palliata. Am J Primatol 74:770–782PubMedCrossRefGoogle Scholar
  11. Bezanson M, Garber PA, Murphy JT, Premo LS (2008) Patterns of subgrouping and spatial affiliation in a community of mantled howling monkeys (Alouatta palliata). Am J Primatol 70:282–293PubMedCrossRefGoogle Scholar
  12. Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper No. 134.Google Scholar
  13. Brown S, Lugo AE (1990) Tropical secondary forests. J Trop Ecol 6(1):1–32CrossRefGoogle Scholar
  14. Chave J, Andalo C, Brown S, Cairns M, Chambers JC, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura, T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99PubMedCrossRefGoogle Scholar
  15. Cifuentes-Jara M (2008) Aboveground biomass and ecosystem carbon pools in tropical secondary forests growing in six life zones of Costa Rica. PhD Dissertation, Oregon State University. Oregon State Library: http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/8904/Cifuentes-Jara_Dissertation.pdf?s Accessed 5 Aug 2013
  16. Clark D (2004) Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Philos Trans R Soc B Biol Sci 359(1443):477–491CrossRefGoogle Scholar
  17. Davis TS, Foote NE, Grady KC (2012) Tree size but not forest basal area influences ant colony response to disturbance in a neotropical ant–plant association. Int J Trop Insect Sci 32(2):116–121CrossRefGoogle Scholar
  18. DeFries RS, Houghton RA, Hansen MC, Field CB, Skole D, Townshend J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proceed Nat Acad Sci 99(22):14256–14261CrossRefGoogle Scholar
  19. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  20. Eggleston S, Buendia L, Miwa K (2006) IPCC guidelines for national greenhouse gas inventories: industrial processes and product use. Institute For Global Environmental Strategies, KanagawaGoogle Scholar
  21. Emrich A, Pokorny B, Sepp C (2000) Importancia del manejo de los bosques secundarios para la política de desarrollo. TOEB Series. Eschborn, Germany, Deutsche Gesellschaft fuer Technische Zusammenarbeit (GTZ), p 98 + annexesGoogle Scholar
  22. FAO (1969) Estudio de los recursos agricolas y forestales del norteste, Nicaragua. Informe Final, Tomo iii. El desarrollo Forestal, Appendecies al Tomo iii. FAO/SF: 49/NIC-2, Rome, ItalyGoogle Scholar
  23. FAO (2006) Global Forest Resource Assessments 2005: progress towards sustainable forest management. FAO Forestry Paper No. 146Google Scholar
  24. FAO (2009) State of the World’s Forests. Rome, Italy. p 152Google Scholar
  25. FAO/UNDP (1972) Investigacion sobre el fomento de la produccion de los bosques del noreste de Nicaragua. Inventario forestal de bosques latifoliados. FO: SF/NIC 9, Informe Tecnico 2, Rome, ItalyGoogle Scholar
  26. Freundt A, Strauch W, Kutterolf S, Schmincke H-U (2007) Volcanogenic tsunamis in lakes: examples from Nicaragua and general implications. Pure and Appl Geophys 164(2–3):527–545CrossRefGoogle Scholar
  27. Garber PA, Jelinek P (2006) Travel patterns and spatial mapping in Nicaraguan mantled howler monkeys (Alouatta palliata). In: Estrada A, Garber P A, Pavelka M, Luecke L, (eds) New perspectives in the study of Mesoamerican primates: distribution, ecology, behavior, and conservation. Springer, New York, pp 287–309CrossRefGoogle Scholar
  28. Garber PA, Pruetz JD, Lavallee AC, Lavallee SG (1999) A preliminary study of mantled howling monkey (Alouatta palliata) ecology and conservation on Isla de Ometepe, Nicaragua. Neotrop Primates 7:113–117Google Scholar
  29. Garber PA, Molina A, Molina RL (2010) Putting the community back in community ecology and education: the role of field schools and private reserves in the ethical training of primatologists. Am J Primatol 72:785–793PubMedCrossRefGoogle Scholar
  30. Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:045023. http://iopscience.org/1748-9326/2/045023
  31. Gillespie TW, Walter H (2001) Distribution of bird species richness at a regional scale in tropical dry forest of Central America. J Biogeogr 28:651–662CrossRefGoogle Scholar
  32. Gillespie TW, Grijalva A, Farris CN (2000) Diversity, composition, and structure of tropical dry forests in Central America. Plant Ecol 147:37–47CrossRefGoogle Scholar
  33. González P, Hassan R, Lakada P, McCallum I, Nilson S, Pulhin J, van Rosenburg B, Scholes B (2008) Forest and woodland systems: Chapter 21, pp 587–614. Millenium Ecosystem Assessment: http://www.millenniumassessment.org/documents/document.290.aspx.pdf. Accessed 2 Aug 2013
  34. Hergoualc’h K, Verchot LV (2011) Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: a review. Glob Biogeochem Cycles 25(2)Google Scholar
  35. Holdridge, LR (1967) Life zone ecology. Tropical Science Center, San JoseGoogle Scholar
  36. Holdridge LR, Grenske WC, Hatheway WH, Liang T, Tosi JA (1971) Forest environments in tropical life zones. Pergamon Press, New YorkGoogle Scholar
  37. Houghton RA (1999) The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 51(2):298–313CrossRefGoogle Scholar
  38. Houghton RA (2005) Tropical deforestation as a source of greenhouse gas emissions. In: Moutinho P, Schwartzman S (eds) Tropical deforestation and climate change. Instituto de Pesquisa Ambiental da Amazonia, Belem, and Environmental Defence, Washington DC, pp 13–21Google Scholar
  39. Houghton RA, Lawrence KT, Hackler JL, Brown S (2001) The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Glob Change Biol 7:731–46CrossRefGoogle Scholar
  40. Huettmann F (1999) Interactions between mantled howling monkeys (Alouatta palliata) and neotropical birds in a fragmented forest habitat on Ometepe Island, Nicaragua. Am J Phys Anthropol, Supplement 28 to the American Association of Physical Anthropology Annual Meeting Issue, p 156Google Scholar
  41. Huettmann F, Humphries G, Spangler M (2011) Carbon stock inventory of multiple low elevation rainforest habitat strata using the REDD protocol in La Suerte Costa Rica, June 2011. USGS Core Science Metadata Clearinghouse: http://mercury-ops2.ornl.gov/clearinghouse/send/xsltText2?fileURL=/data/Mercury_instances/usgs/uaf/harvested/mercury.bio.uaf.edu~falk_huettmann_nbii_REDDplotsLaSuerteJune2011FH4.xml&full_datasource=University of Alaska Fairbanks&full_queryString=huettmann ds_id=. Accessed 2 Aug 2013
  42. IPCC (2007) Climate change 2007: synthesis report, contribution of working groups i, ii and iii to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, SwitzerlandGoogle Scholar
  43. IPCC (2013) Summary for policymakers. in climate change 2013: the physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  44. IUCN (2013) Scope of REDD + and phased approach. www.iucn.org/redd. Accessed 6 Aug 2013
  45. Kapelanczyk L, Rose W I, Jicha B (2012) An eruptive history of Maderas volcano using new 40Ar/39Ar ages and geochemical analyses. Bull Volcanol 74:2007–2021CrossRefGoogle Scholar
  46. Keogh RM (1984) Changes in the forest cover of Costa Rica through history. Turrialba 34(3):325–331Google Scholar
  47. Kirschbaum MUF (1996) The carbon sequestration potential of tree plantations in Australia. In: Eldridge KG, Crowe MP, Old KM (eds) Environmental management: the role of eucalypts and other fast growing species, CSIRO Forestry and Forest Products, Canberra, 77–89Google Scholar
  48. Lal R (2008) Carbon sequestration. Philos Trans R Soc 363:815–830CrossRefGoogle Scholar
  49. Le Quéré C Raupach MR Canadell JG Marland G (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836CrossRefGoogle Scholar
  50. Luyssaert S, Schulze E-D, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace, J (2008). Old-growth forests as global carbon sinks. Nature 455(7210):213–215PubMedCrossRefGoogle Scholar
  51. McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401CrossRefGoogle Scholar
  52. Niles JO, Brown S, Pretty JN, Ball AS, Fay JP (2002) Potential carbon mitigation and income in developing countries from changes in use and management of agricultural and forest lands. In: Swingland IR (ed) Capturing carbon and conserving biodiversity: the market approach. Earthscan Press, pp 70–89Google Scholar
  53. Page SE, Banks C (2007) Tropical peatlands: distribution, extent and carbon storageuncertainties and knowledge gaps. Peatl Int 2:26–27Google Scholar
  54. Page SE, Wust RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quart Sci 19:625–635CrossRefGoogle Scholar
  55. Parmesan C, Yohe G (2003) Globally coherent fingerprints of climate change impacts across natural systems. Nature 421:37–42PubMedCrossRefGoogle Scholar
  56. Pearson TR, Brown SL, Birdsey RA (2007) Measurement guidelines for the sequestration of forest carbon. Northern research Station, Department of Agriculture, USGoogle Scholar
  57. Popp JN, Neubauer D, Paciulli LM, Huettmann F (2007) Using TreeNet for Identifying Management Thresholds of Mantled Howling Monkeysʼ Habitat Preferences on Ometepe Island, Nicaragua, on a Tree and Home Range Scale. J Med Biol Sci 1(1)Google Scholar
  58. Reyes G, Brown S, Chapman J, Lugo AE (1992) Wood densities of tropical tree species. United States Department of Agriculture, 98 Forest Service Southern Forest Experimental Station, New Orleans, Louisiana. General Technical Report SO-88Google Scholar
  59. Sader SA, Joyce AT (1988) Deforestation rates and trends in Costa Rica, 1940 to 1983. Biotropica 20(1): 11–19CrossRefGoogle Scholar
  60. Salas Estrada JB, (1993) Arboles de Nicaragua. Instituto Nicaraguense de Recursos Naturales Y del Ambiente, ManaguaGoogle Scholar
  61. Sanford RL, Paaby P, Lavall JC, Phillips E (1994) Climate, geomorphology, and aquatic systems. In: Mc Dade LA Bawa KS Hespenheide HA Hartshorn GS (eds) La Selva: ecology and natural history of a Neotropical rainforest. University of Chicago Press, Chicago, pp 19–33Google Scholar
  62. Schimel DS, House JI, Hibbard KA et al. (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172PubMedCrossRefGoogle Scholar
  63. Schmid MS, Carlson B, Huettmann F (2012) Carbon stock inventory of a tropical dryforest habitat using REDD (Reducing Emissions from Deforestation and Forest Degradation) plots on Ometepe Island Nicaragua (July 2011; Dec 2011/Jan 2012). USGS Core Science Metadata Clearinghouse:  http://mercury-ops2.ornl.gov/clearinghouse/send/xsltText2?fileURL=/data/Mercury_instances/usgs/uaf/harvested/mercury.bio.uaf.edu_~falk_huettmann_nbii_REDDplotsOmetepeJan2012FH5. xml full_datasource=University of Alaska Fairbanks&full_queryString=ometepe huettmann & ds_id=. Accessed 1 July 2013
  64. Slocum M (2000) Logs and fern patches as recruitment sites in a tropical pasture. Restor Ecol 8(4):408–413CrossRefGoogle Scholar
  65. Slocum M, Horvitz C (2000) Seed arrival under different genera of trees in a neotropical pasture. Plant Ecol 149:51–62CrossRefGoogle Scholar
  66. Steffen W, Crutzen PJ, McNeill JR (2007) The Anthropocene: are humans now overwhelming the great forces of nature. Ambio 36(8):614–621PubMedCrossRefGoogle Scholar
  67. Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, Remy de Coucelles V, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnel AG, Parton WJ, Whitehead D, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosys Environ 164:80–99CrossRefGoogle Scholar
  68. Stoorvogel JJ, Eppink GP (1995) Atlas de la zona Atlantica Norte de Costa Rica. CATIE-UAW-MAG, Guapiles, Costa RicaGoogle Scholar
  69. Subedi B, Pandey SS, Pandey A, Rana EB, Bhattarai S, Banskota TR, Charmakar S, Tamrakar R (2010) Guidelines for measuring carbon stocks in community managed forest. ANSAB, FECOFUN and ICIMOD, KathmanduGoogle Scholar
  70. UN REDD (2011) 2011 Year in Review. FAO, UNDP and UNEP, Geneva Switzerland. UN REDD: http://www.unredd.net/index.php?option=com_docman&task=cat_view&gid=658&Itemid=53. Accessed 6 Aug 2013
  71. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395PubMedCrossRefGoogle Scholar
  72. Wilder PR (2010) Concepción está en plena erupción. Grupo Editorial La Prensa. Managua, Nicaragua. La Prensa: http://www.laprensa.com.ni/2010/03/19/nacionales/19551. Accessed 5 Aug 2013
  73. Winkler LA, Zhang X, Ferrell R, Wagner R, Dahl J, Peter G, Sohn R (2003) Geographic microsatellite variability in Central American howling monkeys. Int J Primatol 25(1):197–210CrossRefGoogle Scholar
  74. Wright SJ, Muller-Landau HC (2006) The future of tropical forest species Biotropica 38:287–301CrossRefGoogle Scholar
  75. Zhao S, Peng C, Jiang H, Tian D, Lei X, Zhou X (2006) Land use change in Asia and the ecological consequences. Ecol Res 21(6):890–896CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2015

Authors and Affiliations

  • Moritz S. Schmid
    • 1
  • Andrew P. Baltensperger
    • 2
  • Jordan Grigor
    • 1
  • Falk Huettmann
    • 3
  1. 1.Département de biologie et Québec-Océan, Takuvik Joint International LaboratoryUniversité LavalQuébecCanada
  2. 2.Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksUSA
  3. 3.EWHALE lab, University of Alaska Fairbanks (UAF)FairbanksUSA

Personalised recommendations