Skip to main content

Scaling Technique

  • Chapter
  • First Online:
Book cover Tunnel Fire Dynamics

Abstract

Physical scaling has been successfully applied throughout the development of fire safety science in the past several decades. It is a very powerful and cost-effective tool to obtain valuable information concerning, for example, fire characteristics, smoke movement, smoke control, fire development, and fire suppression. Typical scaling techniques that have been developed are summarized in this chapter to provide a theoretical benchmark and support for further development of more advanced scaling methods. Different scaling techniques are introduced although the focus is on the Froude scaling method which is the most common one used in fire safety science. Scaling of convective heat transfer, radiative heat transfer, and heat conduction is investigated as well as scaling of water sprays, response time of sprinklers, and combustible materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heskestad G (1975) Physical Modeling of Fire. Journal of Fire & Flammability 6:253–273

    Google Scholar 

  2. Quintiere JG (1989) Scaling Applications in Fire Research. Fire Safety Journal 15:3–29

    Article  Google Scholar 

  3. Ingason H In-Rack Fire Plumes. In: Fire Safety Science – Proceedings of the Fifth International Symposium, Melbourne, Australia, 3–7 March 1997. IAFSS, pp 333–344

    Google Scholar 

  4. Perricone J, Wang M, Quintiere J (2007) Scale Modeling of the Transient Thermal Response of Insulated Structural Frames Exposed to Fire. Fire Technology 44 (2):113–136.

    Article  Google Scholar 

  5. Croce PA, Xin Y (2005) Scale modeling of quasi-steady wood crib fires in enclosures. Fire Safety Journal Vol. 40:245–266

    Article  Google Scholar 

  6. Li YZ, Hertzberg T (2013) Scaling of internal wall temperatures in enclosure fires. SP Technical Research Institute of Sweden, Borås, Sweden

    Google Scholar 

  7. Heskestad G (2002) Scaling the interaction of water sprays and flames. Fire Safety Journal 37:535–548

    Article  Google Scholar 

  8. Heskestad G (2003) Extinction of gas and liquid pool fires with water spray. Fire Safety Journal 38:301–317

    Article  Google Scholar 

  9. Quintiere J.G., Su G.Y., N. S (2007) Physical scaling for water mist fire suppression – a design application. International Journal on Engineering Performance-Based Fire Codes 9 (2):87–108

    Google Scholar 

  10. Yu H.Z., Zhou X.Y., Ditch B.D. Experimental validation of Froude-modeling-based physical scaling of water mist cooling of enclosure fires. In: 9th International Symposium on Fire Safety Science (Poster), Karlsruhe, Germany, 21–26 September 2008. IAFSS, pp 553–564

    Google Scholar 

  11. Jayaweera T.M., Yu H.Z. (2008) Scaling of fire cooling by water mist under low drop Reynolds number conditions. Fire Safety Journal 43:7

    Article  Google Scholar 

  12. Yu H.Z. Physical scaling of water mist suppression of pool fires in enclosures. In, College Park, MD, 2011. 10th International Symposium on Fire Safety Science.

    Google Scholar 

  13. Bettis RJ, Jagger SF, Wu Y (1993) Interim Validation of Tunnel Fire Consequence Models: Summary of Phase 2 Tests. Health and Safety Executive, Buxton, Derbyshire, UK

    Google Scholar 

  14. Oka Y, Atkinson GT (1995) Control of Smoke Flow in Tunnel Fires. Fire Safety Journal 25:305–322

    Article  Google Scholar 

  15. Wu Y, Bakar MZA (2000) Control of smoke flow in tunnel fires using longitudinal ventilation systems – a study of the critical velocity. Fire Safety Journal 35:363–390

    Article  Google Scholar 

  16. Ingason H, Li YZ (2010) Model scale tunnel fire tests with longitudinal ventilation. Fire Safety Journal 45:371–384

    Article  Google Scholar 

  17. Ingason H, Li YZ (2011) Model scale tunnel fire tests with point extraction ventilation. Journal of Fire Protection Engineering 21 (1):5–36

    Article  Google Scholar 

  18. Ingason H (2007) Model Scale Railcar Fire Tests. Fire Safety Journal 42 (4):271–282

    Article  Google Scholar 

  19. Vauquelin O, Telle D (2005) Definition and experimental evaluation of the smoke “confinement velocity” in tunnel fires. Fire Safety Journal 40:320–330

    Article  Google Scholar 

  20. Li YZ, Lei B, Ingason H (2010) Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires. Fire Safety Journal 45:361–370

    Article  Google Scholar 

  21. Li YZ, Lei B, Ingason H (2011) The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires. Fire Safety Journal 46 (4):204–210

    Article  Google Scholar 

  22. Li YZ, Ingason H (2012) The maximum ceiling gas temperature in a large tunnel fire. Fire Safety Journal 48:38–48

    Article  Google Scholar 

  23. Li YZ, Lei B, Ingason H (2010) Theoretical and Experimental Study of Critical Velocity for Smoke Control in a Tunnel Cross-Passage. Fire Technology 49 (2):435–449

    Article  Google Scholar 

  24. Li Yz Lei B Ingason H (2012) Scale modeling and numerical simulation of smoke control for rescue stations in long railway tunnels. Journal of Fire Protection Engineering 22 (2):101–131

    Article  Google Scholar 

  25. Lönnermark A, Lindström J, Li YZ (2011) Model-scale metro car fire tests. SP Technical research Institute of Sweden, Borås, Sweden

    Google Scholar 

  26. Lönnermark A, Lindström J, Li YZ, Claesson A, Kumm M, Ingason H (2012) Full-scale fire tests with a commuter train in a tunnel. SP Technical Research Institute of Sweden, Borås, Sweden

    Google Scholar 

  27. Ingason H (2008) Model scale tunnel tests with water spray. Fire Safety Journal 43 (7):pp 512–528

    Article  Google Scholar 

  28. Li YZ, Ingason H (2013) Model scale tunnel fire tests with automatic sprinkler. Fire Safety Journal 61:298–313

    Article  Google Scholar 

  29. Li YZ, Ingason H (2011) Model scale tunnel fire tests - Automatic sprinklers SP Report 2011:31

    Google Scholar 

  30. Quintiere JG Fire behaviour in building compartments. In: Proceedings of the Combustion Institutes, 2002. pp 181–193

    Google Scholar 

  31. Cheremisinoff N (1986) Encyclopedia of Fluid Mechanics, Volume 3: Gas-Liquid Flows. Gulf Publishing Company, Houston, Texas

    Google Scholar 

  32. Schlichting H (1968) Boundary-layer theory. 6th edn. ISBN 07-055329–7,

    Google Scholar 

  33. Dembele S, Wen JX, Sacadura JF (2000) Analysis of the two-flux model for predicting water spray transmittance in fire protection applications. Journal of Heat Transfer 122 (1):183–186

    Article  Google Scholar 

  34. Dombrowski N., Wolfsohn DL. (1972) The atomization of water by swirl spray pressure nozzles. Trans Inst Chem Engrs 50:259–269

    Google Scholar 

  35. Tewarson A (2002) Generation of Heat and Chemical Compounds in Fires. In: DiNenno PJ, Drysdale D, Beyler CL et al. (eds) The SFPE Handbook of Fire Protection Engineering. Third edition edn. National Fire Protection Association, Quincy, MA, USA, pp 3–82 – 83–161

    Google Scholar 

  36. Heskestad G (1988) Quantification of thermal responsiveness of automatic sprinklers including conduction effects. Fire Safety Journal 14:113–125

    Article  Google Scholar 

  37. Ruffino P., Di Marzo M. (2003) Temperature and Volumetric Fraction Measurements in a Hot Gas Laden with Water Droplets. Journal of Heat Transfer 125 (2):356–364

    Article  Google Scholar 

  38. Ruffino P., Di Marzo M. (2002) The Effect of Evaporative Cooling on the Activation Time of Fire Sprinklers. Paper presented at the Proceedings of the Seventh International Symposium on Fire Safety Science,

    Google Scholar 

  39. Gavelli F., Ruffino P., Anderson G., Di Marzo M. (1999) Effect of Minute Water Droplets on a Simulated Sprinkler Link Thermal Response. NIST GCR 99-776. National Institute of Standards and Technology, Maryland

    Google Scholar 

  40. Li YZ, Ingason H, Lönnermark A (2014) Fire development in different scales of train carriages. Paper presented at the 11th International Symposium on Fire Safety Science (IAFSS) New Zealand,

    Google Scholar 

  41. Li YZ, Ingason H, Lönnermark A (2013) Correlations in different scales of metro carriage fire tests. SP Report 2013:13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haukur Ingason .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ingason, H., Li, Y., Lönnermark, A. (2015). Scaling Technique. In: Tunnel Fire Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2199-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2199-7_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2198-0

  • Online ISBN: 978-1-4939-2199-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics