Skip to main content

Visibility

  • Chapter
  • First Online:
Book cover Tunnel Fire Dynamics

Abstract

Visibility is very important for evacuation during a fire and, therefore, a very important parameter for fire safety in a tunnel. There are different methods for estimating the visibility in smoke-filled spaces, using mass-specific extinction coefficient or the mass optical density. For both methodologies there are experimental values available for some materials of interest. First, the mass extinction coefficient methodology is presented and at the end compared and correlated to the mass optical density methodology. Values of these parameters for selected materials are presented and conversion of values for one of the parameters into the other is discussed. Finally, the effect on the walking speed during egress is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mulholland GW, Liggett W, Koseki H (1997) The Effect of Pool Fire Diameter on the Property of Smoke Produced by Crude Oil Fires. Fire Science and Technology 17 (1):64–69

    Google Scholar 

  2. Widmann JF, Yang JC, Smith TJ, Manzello SL, Mulholland GW (2003) Measurement of the optical extinction coefficients of post-flame soot in the infrared. Combustion and Flame 134:119–129

    Google Scholar 

  3. Mulholland GW, Choi MY Measurement of the Mass Specific Extinction Coefficient for Acetylene and Ethene Smoke Using the Large Agglomerate Optics Facility. In: Twenty-Seventh Symposium (International) on Combustion, 1998. The Combustion Institute, pp 1515–1522

    Google Scholar 

  4. Jin T, Yamada T (1985) Irritating Effects of Fire Smoke on Visibility. Fire Science and Technology 5 (1):79–89

    Google Scholar 

  5. Jin T (2008) Visibility and Human Behavior in Fire Smoke. In: The SFPE Handbook of Fire Protection Engineering. National Fire Protection Engineering, pp 2–54 -- 52–66

    Google Scholar 

  6. Mulholland G, Croarkin C (2000) Specific Extinction Coefficient of Flame Generated Smoke. Fire and Materials 24:227–230

    Google Scholar 

  7. Mulholland GW, Johnsson EL, Fernandez MG, Shear DA (2000) Design and Testing of a New Smoke Concentration Meter. Fire and Materials 24:231–243

    Google Scholar 

  8. ISO (2007) Life-threatening components of fire—Guidelines for estimation of time available for escape using fire data. ISO 13571:2007

    Google Scholar 

  9. Tewarson A (1988) Generation of Heat and Chemical Compounds in Fires. In: DiNenno PJ, Beyler CL, Custer RLP, Walton WD, Watts JM (eds) SFPE Handbook of Fire Protection Engineering. First Edition edn. NFPA, pp 1–179 -- 171–199

    Google Scholar 

  10. Tewardson A (2008) Generation of Heat and Gaseous, Liquid, and Solid Products in Fires. In: SFPE Handbook of Fire Protection Engineering. NFPA, pp 2–109 -- 103–194

    Google Scholar 

  11. Ingason H (2012) Fire Dynamics in Tunnels. In: Beard AN, Carvel RO (eds) In The Handbook of Tunnel Fire Safety, 2nd Edtion ICE Publishing, London, pp 273–304

    Google Scholar 

  12. Steinert C Smoke and Heat Production in Tunnel Fires. In: The International Conference on Fires in Tunnels, Borås, Sweden, 10–11 October 1994. SP Swedish National Testing and Research Institute, pp 123–137

    Google Scholar 

  13. Ingason H, Lönnermark A, Li YZ (2011) Runehamar Tunnel Fire Tests. SP Report 2011:55. SP Technicial Research Institute of Sweden, Borås, Sweden

    Google Scholar 

  14. Frantzich H, Nilsson D (2003) Utrymning genom tät rök: beteende och förflyttning. Avd. för brandteknik, Lunds tekniska högskola, Lund

    Google Scholar 

  15. Fridolf K (2014) Walking speed as function of extinction coefficient. Personal communication, Jan. 10,

    Google Scholar 

  16. Jin T (1978) Visibility through smoke. Journal of Fire & Flamability 9:135–157

    Google Scholar 

  17. Fridolf K, Andrée K, Nilsson D, Frantzich H (2013) The impact of smoke on walking speed. Fire and Materials

    Google Scholar 

  18. BFS (2011) Boverkets allmänna råd om analytisk dimensionering av byggnaders brandskydd. Boverkets Författningsamling, BFS 2011:27 BBRAD (in Swedish)

    Google Scholar 

  19. Frantzich H (2000) Utrymning av tunnelbanaetåg—Experiemntell utvärdering av möjligheten att utrymma i spårtunnel. Räddningsverket, Karlstad

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haukur Ingason .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ingason, H., Li, Y., Lönnermark, A. (2015). Visibility. In: Tunnel Fire Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2199-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2199-7_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2198-0

  • Online ISBN: 978-1-4939-2199-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics