Simplification and Multi-Resolution Representations

  • Lidija Čomić
  • Leila De Floriani
  • Paola Magillo
  • Federico Iuricich
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


Simplification of Morse and Morse-Smale complexes is an important issue to eliminate noise and reduce over-segmentation. Moreover, different users may have different requirements in terms of degree of simplification, which usually vary over time and location within the field domain. Thus, a multi-resolution representation of morphology is critical for interactive analysis and exploration of data. In this chapter, we first describe and compare simplification operators on Morse functions and Morse and Morse-Smale complexes (Sect. 6.1). We then present multi-resolution models for the morphology of scalar fields (Sect. 6.2), and we specify two models in more detail: the first one providing a multi-resolution description of the combinatorial structure of Morse and Morse Smale complexes in arbitrary dimensions, and the second one addressing the problem of coupling a multi-resolution representation of geometry and of morphology in 2D.


Scalar Field Directed Acyclic Graph Morse Function Integral Line Simplification Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Beucher. Watershed, hierarchical segmentation and waterfall algorithm. In J. Serra and P. Soille, editors, Mathematical Morphology and its Applications to Image Processing, volume 2 of Computational Imaging and Vision, pages 69–76. Springer, 1994.Google Scholar
  2. 2.
    P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topological hierarchy for functions on triangulated surfaces. Transactions on Visualization and Computer Graphics, 10(4):385–396, July/August 2004.Google Scholar
  3. 3.
    P.-T. Bremer, V. Pascucci, and B. Hamann. Maximizing adaptivity in hierarchical topological models. In A.G. Belyaev, A.A. Pasko, and M. Spagnuolo, editors, Proc. International Conference on Shape Modeling and Applications 2005 (SMI ’05), pages 300–309, Los Alamitos, California, 2005. IEEE Computer Society Press.Google Scholar
  4. 4.
    P.-T. Bremer, V. Pascucci, and B. Hamann. Maximizing adaptivity in hierarchical topological models using cancellation trees. In Moeller T., Hamann B., and Russell R. D., editors, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, pages 1–18. Springer, 2009.Google Scholar
  5. 5.
    L. Čomić. Operators for Multi-Resolution Morse and Cell Complexes. PhD thesis, University of Novi Sad – Faculty of Technical Sciences, Serbia, 2014.Google Scholar
  6. 6.
    L. Čomić and L. De Floriani. Dimension-independent simplification and refinement of Morse complexes. Graphical Models, 73(5):261–285, September 2011.CrossRefGoogle Scholar
  7. 7.
    L. Čomić, L. De Floriani, and F. Iuricich. Dimension-independent multi-resolution Morse complexes. Computers & Graphics, 36(5):541–547, 2012.CrossRefGoogle Scholar
  8. 8.
    L. Čomić, L. De Floriani, and F. Iuricich. Simplification operators on a dimension-independent graph-based representation of Morse complexes. In C. L. Luengo Hendriks, G. Borgefors, and R. Strand, editors, ISMM, volume 7883 of Lecture Notes in Computer Science, pages 13–24. Springer, 2013.Google Scholar
  9. 9.
    E. Danovaro, L. De Floriani, P. Magillo, M. M. Mesmoudi, and E. Puppo. Morphology-driven simplification and multiresolution modeling of terrains. In E.Hoel and P.Rigaux, editors, Proc. ACM GIS 2003 - The 11th International Symposium on Advances in Geographic Information Systems, pages 63–70. ACM Press, 2003.Google Scholar
  10. 10.
    E. Danovaro, L. De Floriani, P. Magillo, and M. Vitali. Multiresolution Morse triangulations. In G. Elber, A. Fischer, J. Keyser, and M.-S. Kim, editors, Symposium on Solid and Physical Modeling, pages 183–188. ACM, 2010.Google Scholar
  11. 11.
    E. Danovaro, L. De Floriani, L. Papaleo, and M. Vitali. A multi-resolution representation for terrain morphology. In Proc. fourth International Conference on Geographic Information Science - GIScience 2006, Münster, Germany, September 2006.Google Scholar
  12. 12.
    E. Danovaro, L. De Floriani, and M. Vitali. Multi-resolution Morse-Smale complexes for terrain modeling. In 14th International Conference on Image Analysis and Processing, Modena, September 10–14 2007.Google Scholar
  13. 13.
    L. De Floriani, P. Magillo, and E. Puppo. VARIANT - processing and visualizing terrains at variable resolution. In Proc. 5th ACM Workshop on Advances in Geographic Information Systems, Las Vegas, Nevada, 1997.Google Scholar
  14. 14.
    H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse complexes for piecewise linear 2-manifolds. In Proc. 17th ACM Symposium on Computational Geometry, pages 70–79, 2001.Google Scholar
  15. 15.
    H. Edelsbrunner, D. Morozov, and V. Pascucci. Persistence-Sensitive Simplification of Functions on 2-Manifolds. In SCG’06: Proc. of the 22nd Annual Symposium on Computational Geometry 2006, 2006.Google Scholar
  16. 16.
    M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. In Computer Graphics Proceedings, Annual Conference Series (SIGGRAPH ’97), ACM Press, pages 209–216, 1997.Google Scholar
  17. 17.
    A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci. Practical considerations in Morse-Smale complex computation. In V. Pascucci, X. Tricoche, H. Hagen, and J. Tierny, editors, Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications, Mathematics and Visualization, pages 67–78. Springer Verlag, Heidelberg, 2011.Google Scholar
  18. 18.
    A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann. Topology-based simplification for feature extraction from 3D scalar fields. In Proc. IEEE Visualization’05, pages 275–280. ACM Press, 2005.Google Scholar
  19. 19.
    F. Iuricich. Multi-resolution shape analysis based on discrete Morse decompositions. PhD thesis, University of Genova – DIBRIS, Italy, 2014.Google Scholar
  20. 20.
    Y. Matsumoto. An Introduction to Morse Theory, volume 208 of Translations of Mathematical Monographs. American Mathematical Society, 2002.Google Scholar
  21. 21.
    T. Weinkauf, Y. I. Gingold, and O. Sorkine. Topology-based smoothing of 2D scalar fields with c 1-continuity. Computer Graphics Forum, 29(3):1221–1230, 2010.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Lidija Čomić
    • 1
  • Leila De Floriani
    • 2
  • Paola Magillo
    • 2
  • Federico Iuricich
    • 3
  1. 1.Department for Fundamental Disciplines Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Department of Computer Science Bioengineering, Robotics and Systems EngineeringUniversity of GenovaGenovaItaly
  3. 3.Department of Computer ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations