Skip to main content

Boundary-Based and Region-Growing Algorithms

  • Chapter
  • First Online:
  • 470 Accesses

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

This chapter describes two approaches to morphology computation, which are dimension-specific: the boundary-based and the region-growing approach. Such approaches have been developed in the context of Geographic Information Systems (GISs), initially for terrains, and later for three-dimensional scalar fields for applications to volume data visualization. First, we review boundary-based methods, which are based on the idea of building the boundary lines (in 2D) or boundary surfaces (in 3D) of the Morse cells (Sect. 3.1); Then, we review region-growing algorithms, which are based on the idea of growing a cell of the descending or ascending Morse complex associated with a minimum or maximum by starting from such a point as a seed (Sect. 3.2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. L. Bajaj, V. Pascucci, and D. R. Shikore. Visualization of scalar topology for structural enhancement. In Proc. IEEE Visualization’98, pages 51–58. IEEE Computer Society, 1998.

    Google Scholar 

  2. C. L. Bajaj and D. R. Shikore. Topology preserving data simplification with error bounds. Computers and Graphics, 22(1):3–12, 1998.

    Article  Google Scholar 

  3. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A multi-resolution data structure for two-dimensional Morse functions. In Proc. IEEE Visualization’03, pages 139–146. IEEE Computer Society, October 2003.

    Google Scholar 

  4. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topological hierarchy for functions on triangulated surfaces. Transactions on Visualization and Computer Graphics, 10(4):385–396, July/August 2004.

    Google Scholar 

  5. E. Danovaro, L. De Floriani, P. Magillo, M. M. Mesmoudi, and E. Puppo. Morphology-driven simplification and multiresolution modeling of terrains. In E.Hoel and P.Rigaux, editors, Proc. ACM GIS 2003 - The 11th International Symposium on Advances in Geographic Information Systems, pages 63–70. ACM Press, 2003.

    Google Scholar 

  6. E. Danovaro, L. De Floriani, and M. M. Mesmoudi. Topological analysis and characterization of discrete scalar fields. In T.Asano, R.Klette, and C.Ronse, editors, Geometry, Morphology, and Computational Imaging, volume 2616 of Lecture Notes in Computer Science, pages 386–402. Springer Verlag, 2003.

    Google Scholar 

  7. M. de Berg, P. Bose, K. Dobrindt, M.J. van Kreveld, M.H. Overmars, M. de Groot, T. Roos, J. Snoeyink, and S. Yu. The complexity of rivers in triangulated terrains. In Canadian Conference on Computational Geometry, pages 325–330, 1996.

    Google Scholar 

  8. M. de Berg, O. Cheong, H. Haverkort, J.G. Lim, and L. Toma. The complexity of flow on fat terrains and its i/o-efficient computation. Computational Geometry: Theory and Applications, 43:331–356, 2010. Special issue on the 10th Workshop on Algorithms and Data Structures (WADS).

    Google Scholar 

  9. M. de Berg and C. Tsirogiannis. Exact and approximate computations of watersheds on triangulated terrains. In Proc. 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 74–83, 2011.

    Google Scholar 

  10. H. Edelsbrunner and J. Harer. The persistent Morse complex segmentation of a 3-manifold. In Nadia Magnenat-Thalmann, editor, 3DPH, volume 5903 of Lecture Notes in Computer Science, pages 36–50. Springer, 2009.

    Google Scholar 

  11. H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale complexes for piecewise linear 3-manifolds. In Proc. 19th ACM Symposium on Computational Geometry, pages 361–370, 2003.

    Google Scholar 

  12. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse complexes for piecewise linear 2-manifolds. In Proc. 17th ACM Symposium on Computational Geometry, pages 70–79, 2001.

    Google Scholar 

  13. H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9(1):66–104, 1990.

    Article  MATH  Google Scholar 

  14. A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. Efficient computation of Morse-Smale complexes for three-dimensional scalar functions. IEEE Transactions on Visualization and Computer Graphics, 13(6):1440–1447, Nov-Dec 2007.

    Article  Google Scholar 

  15. P. Magillo, E. Danovaro, L. De Floriani, L. Papaleo, and M. Vitali. A discrete approach to compute terrain morphology. Computer Vision and Computer Graphics Theory and Applications, 21:13–26, 2009.

    Article  Google Scholar 

  16. P. Magillo, L. De Floriani, and F. Iuricich. Morphologically-aware elimination of flat edges from a tin. In Proc. 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL GIS 2013), November 5-8 2013.

    Google Scholar 

  17. V. Pascucci. Topology diagrams of scalar fields in scientific visualization. In S. Rana, editor, Topological Data Structures for Surfaces, pages 121–129. John Wiley & Sons Ltd, 2004.

    Google Scholar 

  18. B. Schneider. Extraction of hierarchical surface networks from bilinear surface patches. Geographical Analysis, 37(2):244–263, 2005.

    Article  Google Scholar 

  19. B. Schneider and J. Wood. Construction of metric surface networks from raster-based DEMs. In S. Rana, editor, Topological Data Structures for Surfaces, pages 53–70. John Wiley & Sons Ltd, 2004.

    Google Scholar 

  20. S. Takahashi. Algorithms for extracting surface topology from digital elevation models. In S. Rana, editor, Topological Data Structures for Surfaces, pages 31–51. John Wiley & Sons Ltd, 2004.

    Google Scholar 

  21. S. Takahashi, T. Ikeda, T. L. Kunii, and M. Ueda. Algorithms for extracting correct critical points and constructing topological graphs from discrete geographic elevation data. In Computer Graphics Forum, volume 14, pages 181–192, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Čomić, L., De Floriani, L., Magillo, P., Iuricich, F. (2014). Boundary-Based and Region-Growing Algorithms. In: Morphological Modeling of Terrains and Volume Data. SpringerBriefs in Computer Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2149-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2149-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2148-5

  • Online ISBN: 978-1-4939-2149-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics