Role and Significance of Sperm Function in Men with Unexplained Infertility

  • Sandro C. Esteves
  • Sidney Verza
  • Rakesh K. Sharma
  • Jaime Gosálvez
  • Ashok Agarwal


It is estimated that about 20 % of couples with difficulties to conceive have no identifiable infertility conditions based on the routine investigation. Such couples are categorized as having unexplained infertility (UI). Concerning the male partner, results of semen analyses are usually taken as surrogates of the fertility potential. Semen analysis, however, must go far beyond counting spermatozoa and assessing motility and morphology, as routinely performed. After ruling out female infertility factors, specialized andrology testing may assist in unraveling dysfunctions related to immunologic disorders, excessive oxidative stress, and other problems affecting spermatozoa at the cellular and subcellular levels. Recent advances in the field of genetics, proteomics, and metabolomics hold promise and some tests, including those that measure sperm chromatin integrity and reactive oxygen species (ROS), have already been added to the laboratory male infertility investigation. This chapter focuses on the traditional and novel clinically available laboratory methodologies for the investigation of the male partner of couples with UI, including antisperm antibodies (ASA), sperm fertilization defects, levels of ROS both in the sperm and seminal plasma, and sperm chromatin integrity. The identification of dysfunctions by cost-effective and accurate specialized sperm function tests helps not only to identify the cause of male infertility but also to define treatment strategies.


Andrology Infertility Oxidative stress Autoimmune infertility Semen analysis DNA damage Assisted reproductive techniques 


  1. 1.
    Esteves SC, Zini A, Aziz N, Alvarez JG, Sabanegh ES Jr, Agarwal A. Critical appraisal of World Health Organization’s new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men. Urology. 2012;79:16–22.PubMedCrossRefGoogle Scholar
  2. 2.
    Samplaski MK, Agarwal A, Sharma R, Sabanegh E. New generation of diagnostic tests for infertility: review of specialized semen tests. Int J Urol. 2010;17:839–47.PubMedCrossRefGoogle Scholar
  3. 3.
    Hamada A, Esteves SC, Agarwal A. Unexplained male infertility—looking beyond routine semen analysis. Eur Urol Rev. 2012;7:90–6.Google Scholar
  4. 4.
    Kopa Z, Berenyi M. Inflammatory parameters of the ejaculate. In: Björndahl L GA, Tournaye H, Weidner W, editors. Clinical Andrology EAU/ESAU course guidelines. New York: Informa Healthcare; 2010. pp. 301–8.CrossRefGoogle Scholar
  5. 5.
    Ayvaliotis B, Rosenfeld D, Cooper G. Conception rates in couples where autoimmunity to sperm is detected. Fertil Steril. 1985;43:739–42.PubMedGoogle Scholar
  6. 6.
    Turek PJ. Immunopathology and infertility. In: Lipshultz LI, Howards SS, editors. Infertility in the male. St. Louis: Mosby-Year Book Inc; 1997. pp. 305–25.Google Scholar
  7. 7.
    Esteves SC, Schneider DT, Verza S Jr. Influence of antisperm antibodies in the semen on intracytoplasmic sperm injection outcome. Int Braz J Urol. 2007;33:795–802.PubMedCrossRefGoogle Scholar
  8. 8.
    Mortimer D. Practical laboratory andrology. New York: Oxford University Press; 1994. pp. 221–32.Google Scholar
  9. 9.
    Shibahara H, Burkman LJ, Isojima S, Alexander NJ. Effects of sperm—immobilizing antibodies on sperm-zona pellucida tight binding. Fertil Steril. 1993;60:533–9.PubMedGoogle Scholar
  10. 10.
    Bates CA. Antisperm antibodies and male subfertility. Br J Urol. 1997;80:691–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Bronson RA. Antisperm antibodies: a critical evaluation and clinical guidelines. J Reprod Immunol. 1999;45:159–83.PubMedCrossRefGoogle Scholar
  12. 12.
    Hamada A, Esteves SC, Agarwal A. Unexplained male infertility: potential causes and management. Hum Androl. 2011;1:2–16.CrossRefGoogle Scholar
  13. 13.
    Rajah SV, Parslow JM, Howell RJ, Hendry WF. Comparison of mixed antiglobulin reaction and direct immunobead test for detection of sperm-bound antibodies in subfertile males. Fertil Steril. 1992;57:1300–3.PubMedGoogle Scholar
  14. 14.
    BioRad. Immunobead binding test (IBT) protocol for anti-sperm cell antibody detection. Bulletin. 1987;170:1–4.Google Scholar
  15. 15.
    Chiu WW, Chamley LW. Clinical associations and mechanisms of action of antisperm antibodies. Fertil Steril. 2004;82(2):529–35.PubMedCrossRefGoogle Scholar
  16. 16.
    WHO. Laboratory manual for the examination and processing of human semen. 5th edn. Switzerland: WHO Press; 2010. pp. 108–13.Google Scholar
  17. 17.
    Henkel R, Muller C, Miska W, Gips H, Schill WB. Determination of the acrosome reaction in human spermatozoa is predictive of fertilization in vitro. Hum Reprod. 1993;8(12):2128–32.PubMedGoogle Scholar
  18. 18.
    Mortimer D. From the semen to oocyte: the long route in vivo and in vitro short cut. In: Testart J, Frydman R, editors. Human in vitro fertilization: actual problems and prospects. Amsterdam: Elsevier Science; 1985. p. 93.Google Scholar
  19. 19.
    Fraser LR. Mechanisms controlling mammalian fertilization. In: Clarke JR, editors. Oxford reviews of reproductive biology. Oxford: Oxford University Press; 1984. p. 173.Google Scholar
  20. 20.
    Cross NL. Effect of cholesterol and other sterols on human sperm acrosomal responsiveness. Mol Reprod Dev. 1996;45(2):212–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Mortimer D. Practical laboratory andrology. New York: Oxford University Press; 1994. p. 393.Google Scholar
  22. 22.
    Lamirande E, Leclerc P, Gagnon C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod. 1997;3(3):175–94.PubMedCrossRefGoogle Scholar
  23. 23.
    Lindemann, CB, Kanous, KS. Regulation of mammalian sperm motility. Arch Androl. 1989;23(1):1–22.Google Scholar
  24. 24.
    Matsumura K, Aketa K. Proteasome (multicatalytic proteinase) of sea urchin sperm and its possible participation in the acrosome reaction. Mol Reprod Dev. 1991;29(2):189–99.Google Scholar
  25. 25.
    Inaba K, Akazome Y, Morisawa M. Two high molecular mass proteases from sea urchin sperm. Biochem Biophys Res Commun. 1992;182(2):667–74.Google Scholar
  26. 26.
    Morales P, Kong M, Pizarro E, Pasten C. Participation of the sperm proteasome in human fertilization. Hum Reprod. 2003;18(5): 1010–7.Google Scholar
  27. 27.
    Zaneveld LJ, De Jonge CJ, Anderson RA, Mack SR. Human sperm capacitation and the acrosome reaction. Hum Reprod. 1991;6(9):1265–74.Google Scholar
  28. 28.
    Mansour RT, Serour MG, Abbas AM, et al. The impact of spermatozoa preincubation time and spontaneous acrosome reaction in intracytoplasmic sperm injection: a controlled randomized study. Fertil Steril. 2008;90(3):584–91.Google Scholar
  29. 29.
    Yanagimachi R, Bhattacharyya A. Acrosome-reacted guinea pig spermatozoa become fusion competent in the presence of extracellular potassium ions. J Exp Zool. 1988;248(3):354–60.Google Scholar
  30. 30.
    Katz DF, Drobnis EA, Overstreet JW. Factors regulating mammalian sperm migration through the female reproductive tract and oocyte vestments. Gamete Res. 1989;22:443.Google Scholar
  31. 31.
    Nichol R, Hunter RH, Gardner DK, Leese HJ, Cooke GM. Concentrations of energy substrates in oviductal fluid and blood plasma of pigs during the periovulatory period. J Reprod Fertil. 1992;96:699–707.Google Scholar
  32. 32.
    Breitbart H, Spungin B. The biochemistry of the acrosome reaction. Mol Hum Reprod. 1997;3(3):195–202.Google Scholar
  33. 33.
    Kopf GS, Gerton GL. The mammalian sperm acrosome and the acrosome reaction. In: Wasserman PM, editors. Elements of mammalian fertilization. Boston: CRC Press; 1991. pp. 153–203.Google Scholar
  34. 34.
    Chiu PCN, Wong BST, Chung MK, et al. Effects of native human zona pellucida glycoproteins 3 and 4 on acrosome reaction and zona pellucida binding of human spermatozoa. Biol Reprod. 2008;79(5):869–77.Google Scholar
  35. 35.
    Ganguly A, Bukovsky A, Sharma RK, Bansal P, Bhandari B, Gupta SK. In humans, zona pellucida glycoprotein-1 binds to spermatozoa and induces acrosomal exocytosis. Hum Reprod. 2010;25(7):1643–56.Google Scholar
  36. 36.
    Gupta SK, Chakravarty S, Suraj K, et al. Structural and functional attributes of zona pellucida glycoproteins [abstract]. Soc Reprod Fertil. 2007;63(Suppl. 1):203–16.Google Scholar
  37. 37.
    Gupta SK, Bansal P, Ganguly A, Bhandari B, Chakrabarti K. Human zona pellucida glycoproteins: functional relevance during fertilization. J Reprod Immunol. 2009;83(1–2):50–5.Google Scholar
  38. 38.
    Chiu PC, Wong BS, Lee CL, et al. Zona pellucida-induced acrosome reaction in human spermatozoa is potentiated by glycodelin-A via down-regulation of extracellular signal-regulated kinases and up-regulation of zona pellucida-induced calcium influx. Hum Reprod. 2010;25(11):2721–33.Google Scholar
  39. 39.
    Liu DY, Baker HW. Defective sperm-zona pellucida interaction: a major cause of failure of fertilization in clinical in-vitro fertilization. Hum Reprod. 2000;15:702–8.Google Scholar
  40. 40.
    Liu DY, Baker HW. Disordered zona pellucida-induced acrosome reaction and failure of in vitro fertilization in patients with unexplained infertility. Fertil Steril. 2003;79:74–80.Google Scholar
  41. 41.
    Mackenna A, Barratt CL, Kessopoulou E, Cooke I. The contribution of a hidden male factor to unexplained infertility. Fertil Steril. 1993;59:405–411.Google Scholar
  42. 42.
    Yanagimachi, R. Mammalian fertilization. In: Knobil E, Neill JD, Ewing LL, et al., editors. The physiology of reproduction. New York: Raven Press; 1994. p. 189.Google Scholar
  43. 43.
    Brucker C, Lipford GB. The human sperm acrosome reaction: physiology and regulatory mechanisms. An update. Hum Reprod Update. 1995;1(1):51–62.Google Scholar
  44. 44.
    Thomas P, Meizel S. Phosphatidylinositol 4,5-bisphosphate hydrolysis in human sperm stimulated with follicular fluid or progesterone is dependent upon Ca2+ influx. Biochem J. 1989;264(2):539–46.Google Scholar
  45. 45.
    Aquila S, Sisci D, Gentile M, et al. Towards a physiological role for cytochrome P450 aromatase in ejaculated human sperm. Hum Reprod. 2003;18(8):1650–9.Google Scholar
  46. 46.
    Baldi E, Luconi M, Bonaccorsi L, Muratori M, Forti G. Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction. Front Biosci. 2000;1(5):110–23.Google Scholar
  47. 47.
    Cummins JM, Fleming AD, Crozet N, Kuehl TJ, Kosower NS, Yanagimachi R. Labelling of living mammalian spermatozoa with the fluorescent thiol alkylating agent, monobromobimane (MB): immobilization upon exposure to ultraviolet light and analysis of acrosomal status. J Exp Zool. 1986;237(3):375–82.Google Scholar
  48. 48.
    Esteves SC, Sharma RK, Thomas AJ Jr, Agarwal A. Cryopreservation of human spermatozoa with pentoxifylline improves the post-thaw agonist-induced acrosome reaction rate. Hum Reprod. 1998;13(12):3384–9.Google Scholar
  49. 49.
    Kilani Z, Ismail R, Ghunaim S, et al. Evaluation and treatment of familial globozoospermia in five brothers. Fertil Steril. 2004;82(5):1436–9.Google Scholar
  50. 50.
    Tesarik J, Mendoza C. Alleviation of acrosome reaction prematurity by sperm treatment with egg yolk. Fertil Steril. 1995;63(1):153–7.Google Scholar
  51. 51.
    Esteves SC, Sharma RK, Thomas AJ Jr, Agarwal A. Effect of in vitro incubation on spontaneous acrosome reaction in fresh and cryopreserved human spermatozoa. Int J Fertil Womens Med. 1998;43(5):235–42.PubMedGoogle Scholar
  52. 52.
    Chang TH, Jih MH, Wu TC. Relationship of sperm antibodies in women and men to human in vitro fertilization, cleavage, and pregnancy rate. Am J Reprod Immunol. 1993;30(2–3):108–12.PubMedCrossRefGoogle Scholar
  53. 53.
    Junk SM, Matson PL, Yovich JM, Bootsma B, Yovich JL. The fertilization of human oocytes by spermatozoa from men with antispermatozoal antibodies in semen. J In Vitro Fert Embryo Transf. 1986;3(6):350–2.Google Scholar
  54. 54.
    Meinertz H, Linnet L, Fogh-Andersen P, Hjort T. Antisperm antibodies and fertility after vasovasostomy: a follow-up study of 216 men. Fertil Steril. 1990;54(2):315–21.Google Scholar
  55. 55.
    De Almeida M, Gazagne I, Jeulin C, et al. In-vitro processing of sperm with autoantibodies and in-vitro fertilization results. Hum Reprod. 1989;4(1):49–53.Google Scholar
  56. 56.
    Matson PL, Junk SM, Spittle JW, Yovich JL. Effect of antispermatozoal antibodies in seminal plasma upon spermatozoal function. Int J Androl. 1988;11(2):101–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Kumi-Diaka J, Townsend J. Toxic potential of dietary genistein isoflavone and beta-lapachone on capacitation and acrosome reaction of epididymal spermatozoa. J Med Food. 2003;6(3):201–8.Google Scholar
  58. 58.
    Feng HL, Han YB, Hershlag A, Zheng LJ. Impact of Ca 2+ flux inhibitors on acrosome reaction of hamster spermatozoa. J Androl. 2007;28(4):561–4.Google Scholar
  59. 59.
    Whan LB, West M, McClure N, Lewis SEM. The effects of Delta-9-tetrahydrocannabinol, the primary psychoactive cannabinoid in marijuana, on human sperm function in vitro. Fertil Steril. 2006;85:653–60.Google Scholar
  60. 60.
    Falzone N, Huyser C, Becker P, Leszczynski D, Franken DR. The effect of pulsed 900-MHz GSM mobile phone radiation on the acrosome reaction, head morphometry and zona binding of human spermatozoa. Int J Androl. 2011;34(1):20–6.Google Scholar
  61. 61.
    Mukhopadhyay D, Nandi P, Varghese AC, Gutgutia R, Banerjee S, Bhattacharyya AK. The in vitro effect of benzo[a]pyrene on human sperm hyperactivation and acrosome reaction. Fertil Steril. 2010;94(2):595–8.Google Scholar
  62. 62.
    Liu DY, Clarke GN, Lopata A, Johnston WI, Baker HW. A sperm-zona pellucida binding test and in vitro fertilization. Fertil Steril. 1989;52:281–7.Google Scholar
  63. 63.
    Munire M, Shimizu Y, Sakata Y, Minaguchi R, Aso T. Impaired hyperactivation of human sperm in patients with infertility. J Med Dent Sci. 2004;51:99–104.PubMedGoogle Scholar
  64. 64.
    Liu DY, Baker HW. Disordered acrosome reaction of spermatozoa bound to the zona pellucida: a newly discovered sperm defect causing infertility with reduced sperm-zona pellucida penetration and reduced fertilization in vitro. Hum Reprod. 1994;9:1694–700.Google Scholar
  65. 65.
    Liu de Y Liu ML Garrett C Baker HW. Comparison of the frequency of defective sperm-zona pellucida (ZP) binding and the ZP-induced acrosome reaction between subfertile men with normal and abnormal semen. Hum Reprod. 2007;22:1878–84.Google Scholar
  66. 66.
    Aitken RJ, Best FS, Richardson DW, Djahanbakhch O, Mortimer D, Templeton AA, et al. An analysis of sperm function in cases of unexplained infertility: conventional criteria, movement characteristics, and fertilizing capacity. Fertil Steril. 1982;38:212–21.Google Scholar
  67. 67.
    Liu DY, Lopata A, Johnston WI, Baker HW. A human sperm-zona pellucid binding test using oocytes that failed to fertilize in vitro. Fertil Steril. 1988;50:782–88.Google Scholar
  68. 68.
    Mackenna A, Barratt CL, Kessopoulou E, Cooke I. The contribution of a hidden male factor to unexplained infertility. Fertil Steril. 1993;59:405–11.Google Scholar
  69. 69.
    Esteves SC, Sharma RK, Thomas Jr AJ, Agarwal A. Effect of swim-up sperm washing and subsequent capacitation on acrosome status and functional membrane of normal sperm. Int J Fertil. 2000;45:335–41.Google Scholar
  70. 70.
    Kay VJ, Robertson L. Hyperactivated motility of human spermatozoa: a review of physiological function and application in assisted reproduction. Hum Reprod Update. 1998;4:776–86.Google Scholar
  71. 71.
    Burkman LJ. Discrimination between nonhyperactivated and classical hyperactivated motility patterns in human spermatozoa using computerized analysis. Fertil Steril. 1991;55:363–71.Google Scholar
  72. 72.
    Esteves SC, Glina S, Wonchockier R, Correa NR. Sperm kinematics of normozoospermic specimens after stimulation by varying concentrations of a specific inhibitor of cGMP phosphodiesterase type-5 (sildenafil). Fertil Steril. 2003;80(Suppl. 3):236.Google Scholar
  73. 73.
    Garrett C, Liu DY, Clarke GN, Rushford DD, Baker HW. Automated semen analysis: ‘zona pellucida preferred’ sperm morphometry and straight-line velocity are related to pregnancy rate in subfertile couples. Hum Reprod. 2003;18:1643–9.Google Scholar
  74. 74.
    Mackenna A, Barratt CL, Kessopoulou E, Cooke I. The contribution of a hidden male factor to unexplained infertility. Fertil Steril. 1993;59:405–11.Google Scholar
  75. 75.
    Pacey AA, Ladbrook MB, Barratt CL, Cooke ID. The potential shortcomings of measuring hyperactivated motility by computer-aided sperm analysis when sperm motion is multiphasic. Hum Reprod Update. 1997;3:185–93.Google Scholar
  76. 76.
    Esteves SC, Verza Jr S. Relationship of in vitro acrosome reaction to sperm function: an update. Open Reprod Sci J. 2011;3:72–84.Google Scholar
  77. 77.
    Cummins JM, Pember SM, Jequier AM, Yovich JL, Hartmann PE. A test of the human sperm acrosome reaction following ionophore challenge. Relationship to fertility and other seminal parameters. J Androl. 1991;12:98–103.Google Scholar
  78. 78.
    Cross NL, Morales P, Overstreet JW, Hanson FW. Two simple methods for detecting acrosome-reacted human sperm. Gam Res. 1986;15:213–26.Google Scholar
  79. 79.
    Esteves SC, Sharma RK, Thomas AJ Jr, Agarwal A. Evaluation of acrosomal status and sperm viability in fresh and cryopreserved specimens by the use of fluorescent peanut agglutinin lectin in conjunction with hypo-osmotic swelling test. Int Braz J Urol. 2007;33:364–74.Google Scholar
  80. 80.
    Esteves SC, Sharma RK, Thomas Jr AJ, Agarwal A. Improvement in motion characteristics and acrosome status in cryopreserved human spermatozoa by swim-up processing before freezing. Hum Reprod. 2000;15:2173–9.Google Scholar
  81. 81.
    Esteves SC, Spaine DM, Cedenho AP. Effects of pentoxifylline treatment before freezing on motility, viability and acrosome status of poor quality human spermatozoa cryopreserved by the liquid nitrogen vapor method. Braz J Med Biol Res. 2007;40:985–92.Google Scholar
  82. 82.
    Aitken RJ, Buckingham DW, Fang HG. Analysis of the responses of human spermatozoa to A23187 employing a novel technique for assessing the acrosome reaction. J Androl. 1993;14(2):132–41.Google Scholar
  83. 83.
    Esteves SC, Sharma RK, Thomas AJ Jr, Agarwal A. Suitability of the hypo-osmotic swelling test for assessing the viability of cryopreserved sperm. Fertil Steril. 1996;66(5):798–804.Google Scholar
  84. 84.
    Calvo L, Dennison-Lagos L, Banks SM, et al. Acrosome reaction inducibility predicts fertilization success at in-vitro fertilization. Hum Reprod. 1994;9(10):1880–6.Google Scholar
  85. 85.
    Yovich JM, Edirisinghe WR, Yovich JL. Use of the acrosome reaction to ionophore challenge test in managing patients in an assisted reproduction program: a prospective, double-blind, randomized controlled study. Fertil Steril. 1994;61(5):902–10.Google Scholar
  86. 86.
    Katsuki T, Hara T, Ueda K, Tanaka J, Ohama K. Prediction of outcomes of assisted reproduction treatment using the calcium ionophore-induced acrosome reaction. Hum Reprod. 2005;20(2):469–75.Google Scholar
  87. 87.
    Liu DY, Bourne H, Baker HW. High fertilization and pregnancy rates after intracytoplasmic sperm injection in patients with disordered zona pellucida induced acrosome reaction. Fertil Steril. 1997;67:955–8.Google Scholar
  88. 88.
    Talbot P, Chacon R. A new procedure for rapidly scoring acrosome reactions of human sperm. Gamete Res. 1980;3:211–6.Google Scholar
  89. 89.
    Liu DY, Sie BS, Liu ML, Agresta F, Baker HW. Relationship between seminal plasma zinc concentration and spermatozoa-zona pellucida binding and the ZP-induced acrosome reaction in subfertile men. Asian J Androl. 2009;11:499–507.Google Scholar
  90. 90.
    Zini A, Sigman M. Evaluation of sperm function. In: Lipshultz LI, Howards SS, Craig S, editors. Infertility in the male. Cambridge: Cambridge University Press; 2009. pp. 177–198.Google Scholar
  91. 91.
    Wolf DP, Sokoloski JE, Quigley MM. Correlation of human in vitro fertilization with the hamster egg bioassay. Fertil Steril. 1983;40:53–9.Google Scholar
  92. 92.
    Chan SY, Fox EJ, Chan MM, Tsoi WL, Wang C, Tang LC, et al. The relationship between the human sperm hypoosmotic swelling test, routine semen analysis, and the human sperm zona-free hamster ovum penetration assay. Fertil Steril. 1985;44:668–72.Google Scholar
  93. 93.
    Check JH, Nowroozi K, Lee M, Adelson H, Katsoff D. Evaluation and treatment of a male factor component to unexplained infertility. Arch Androl. 1990;25:199–211.Google Scholar
  94. 94.
    Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9:678–90.Google Scholar
  95. 95.
    Aitken RJ, Buckingham D, West K, Wu FC, Zikopoulos K, Richardson DW. Differential contribution of leucocytes and spermatozoa to the generation of reactive oxygen species in the ejaculates of oligozoospermic patients and fertile donors. J Reprod Fertil. 1992;94:451–62.Google Scholar
  96. 96.
    Esfandiari N, Sharma RK, Saleh RA, Thomas Jr AJ, Agarwal A. Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa. J Androl. 2003;24:862–70.Google Scholar
  97. 97.
    Gavella M, Lipovac V. NADH-dependent oxido-reductase (diaphorase) activity and isozyme pattern of sperm in infertile men. Arch Androl. 1992;28:135–41.Google Scholar
  98. 98.
    Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122:497–506.Google Scholar
  99. 99.
    Lewis SE, Boyle PM, McKinney KA, Young IS, Thompson W. Total antioxidant capacity of seminal plasma is different in fertile and infertile men. Fertil Steril. 1995;64(4):868–70.PubMedGoogle Scholar
  100. 100.
    Pauling L, Robinson AB, Teranishi R, Cary P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci. 1971;68:2374–76.Google Scholar
  101. 101.
    Colagar AH, Pouramir M, Marzony ET, Jorsaraei SGA. Relationship between seminal malondialdehyde levels and sperm quality in fertile and infertile men. Braz Arch Biol Technol. 2009;52(6):1387–92.Google Scholar
  102. 102.
    Desai N, Sharma RK, Makker K, Sabanegh E, Agarwal A. Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men. Fertil Steril. 2009;92(5):1626–31.Google Scholar
  103. 103.
    Pasqualotto FB, Sharma RK, Kobayashi H, Nelson DR, Thomas Jr AJ, Agarwal A. Oxidative stress in normospermic men undergoing infertility evaluation. J Androl. 2001;22:316–22.Google Scholar
  104. 104.
    Mahfouz R, Sharma R, Sharma D, Sabanegh E, Agarwal A. Diagnostic value of the total antioxidant capacity (TAC) assay in human seminal plasma. Fertil Steril. 2009;91:805–11.Google Scholar
  105. 105.
    Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress invaricocele-associated male infertility: part 2. Nat Rev Urol. 2013;10(1):26–37.Google Scholar
  106. 106.
    Gomez E, Irvine DS, Aitken RJ. Evaluation of a spectrophotometric assay for the measurement of malondialdehyde and 4-hydroxyalkenals in human spermatozoa: relationships with semen quality and sperm function. Int J Androl. 1998;21:81–94.Google Scholar
  107. 107.
    Benjamin D, Sharma RK, Moazzam A, Agarwal A. Method for the detection of ROS in human sperm samples. In: Agarwal A, Robert J, Aitken J, Alvarez G, editors. Studies on men’s health and fertility. New York: Springer; 2012. (Chap. 13). pp. 257–73.Google Scholar
  108. 108.
    Sharma RK, Pasqualotto FF, Nelson DR, Thomas AJ Jr, Agarwal A. The reactive oxygen species—total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod. 1999;14:2801–7.Google Scholar
  109. 109.
    Lampiao F, Opperman CJ, Agarwal A, du Plessis SS. Oxidative stress. In: Parekattil SJ, Agarwal A, editors. Male infertility: contemporary clinical approaches, andrology, ART & antioxidants. 1st edn. New York: Springer; 2012. pp. 225–35.Google Scholar
  110. 110.
    Tunc O, Thompson J, Tremellen K. Development of the NBT assay as a marker of sperm oxidative stress. Int J Androl. 2010;33(1):13–21.Google Scholar
  111. 111.
    Shamsi MB, Imam SN, Dada R. Sperm DNA integrity assays: diagnostic and prognostic challenges and implications in management of infertility. J Assist Reprod Genet. 2011;28(11): 1073–85.Google Scholar
  112. 112.
    Aitken RJ, de Iullis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2009;32:46–56.Google Scholar
  113. 113.
    Hamada A, Esteves SC, Nizza M, Agarwal A. Unexplained male infertility: diagnosis and management. Int Braz J Urol. 2012;38:576–94.Google Scholar
  114. 114.
    Host E, Lindenberg S, Ernst E, Christensen F. DNA strand breaks in human spermatozoa: a possible factor, to be considered in couples suffering from unexplained infertility. Acta Obstet Gynecol Scand. 1999;78:622–5.Google Scholar
  115. 115.
    Saleh RA, Agarwal A, Nelson DE, Nada EA, El-Tonsy MH, Alvarez JG, et al. Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril. 2002;78:313–8.Google Scholar
  116. 116.
    Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish first pregnancy planner study team. Fertil Steril. 2000;73:43–50.Google Scholar
  117. 117.
    Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril. 2003;80:895–902.Google Scholar
  118. 118.
    Saleh RA, Agarwal A, Nada ES, El-Tonsy MH, Sharma RK, Meyer A. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79(3):1597–605.Google Scholar
  119. 119.
    Check JH, Graziano V, Cohen R, Krotec J, Check ML. Effect of an abnormal sperm chromatin structural assay (SCSA) on pregnancy outcome following (IVF) with ICSI in previous IVF failures. Arch Androl. 2005;51:121–4.Google Scholar
  120. 120.
    Aitken RJ, Koopman P, Lewis SE. Seeds of concern. Nature. 2004;432:48–52.Google Scholar
  121. 121.
    Zini A, Meriano J, Kader K, et al. Potential adverse effect of sperm DNA damage on embryo quality after ICSI. Hum Reprod. 2005;20:3476–80.Google Scholar
  122. 122.
    Aitken RJ, Koppers AJ. Apoptosis and DNA damage in human spermatozoa. Asian J Androl. 2011;13:36–42.Google Scholar
  123. 123.
    Esteves SC, Agarwal A. Novel concepts in male infertility. Int Braz J Urol. 2011;37(1):5–15.Google Scholar
  124. 124.
    Marchetti F, Wyrobek AJ. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage. DNA Repair. 2008;7:572–81.Google Scholar
  125. 125.
    Gosálvez J, López-Fernández C, Fernández JL. Sperm Chromatin Dispersion (SCD) test: technical aspects and clinical applications. In: Armand Z, Agarwal A, editors. Sperm DNA damage: biological and clinical applications in male infertility and assisted reproduction. New York: Springer; 2011. pp. 151–170.Google Scholar
  126. 126.
    Sharma RK, Sabanegh E, Mahfouz R, Gupta S, Thiyagarajan A, Agarwal A. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010;76(6):1380–6.Google Scholar
  127. 127.
    Feijó CM, Esteves SC. Diagnostic accuracy of sperm chromatin dispersion (SCD) test to evaluate sperm DNA damage in men with unexplained infertility. Fertil Steril. 2014;101(1):58-63.Google Scholar
  128. 128.
    Fernández JL, Muriel L, Goyanes V, Segrelles E, Gosálvez J, Enciso M, Lafrombois ME, De Jonge C. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion (SCD) test. Fertil Steril. 2005;84:833–42.Google Scholar
  129. 129.
    Zee YP, López-Fernández C, Arroyo F, Johnston SD, Holt WV, Gosálvez J. Evidence that single-stranded DNA breaks are a normal feature of koala sperm chromatin, while double-stranded DNA breaks are indicative of DNA damage. Reproduction. 2009;138:267–78.Google Scholar
  130. 130.
    Enciso M, Sarasa J, Agarwal A, Fernández JL, Gosálvez J. A two-tailed Comet assay for assessing DNA damage in spermatozoa. Reprod BioMed Online. 2009;18:609–16.Google Scholar
  131. 131.
    Bianchi PG, Manicardi GC, Bizzaro D, Bianchi U, Sakkas D. Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod. 1993;49(5):1083–8.Google Scholar
  132. 132.
    Hayasaka T, Inoue Y. Chromomycin A3 studies in aqueous solutions. Spectrophotometric evidence for aggregation and interaction with herring sperm deoxyribonucleic acid. Biochemistry. 1969;8(6):2342–7.Google Scholar
  133. 133.
    Deepinder F, Cocuzza M, Agarwal A. Should seminal oxidative stress measurement be offered routinely to men presenting for infertility evaluation? Endocr Pract. 2008;14:484–91.Google Scholar
  134. 134.
    Meseguer M, Santiso R, Garrido N, García-Herrero S, Remohí J, et al. Effect of sperm DNA fragmentation on pregnancy outcome depends on oocyte quality. Fertil Steril. 2011;95:124–8.Google Scholar
  135. 135.
    Ashwood-Smith MJ, Edwards RG. DNA repair by oocytes. Mol Hum Reprod. 1996;2:46–51.Google Scholar
  136. 136.
    Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36.Google Scholar
  137. 137.
    Ahmadi A, Ng SC. Fertilizing ability of DNA damaged spermatozoa. J Exp Zool. 1999;284:696–704.Google Scholar
  138. 138.
    Ahmadi A, Ng SC. Developmental capacity of damaged spermatozoa. Hum Reprod. 1999;14:2279–85.Google Scholar
  139. 139.
    Borini A, Tarozzi N, Bizzaro D, Bonu MA, Fava L, et al. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod. 2006;21:2876–81.Google Scholar
  140. 140.
    Pogozelski WK, Tullius TD. Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety. Chem Rev. 1998;98:1089–107.Google Scholar
  141. 141.
    Caldecott KW. Single-strand break repair and genetic disease. Nat Rev Genet. 2008;9:619–31.Google Scholar
  142. 142.
    Santiso R, Tamayo M, Gosálvez J, Meseguer M, Garrido N, Fernández JL. Simultaneous determination in situ of DNA fragmentation and 8-oxoguanine in human sperm. Fertil Steril. 2010;93:314–8.Google Scholar
  143. 143.
    Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, et al. Utility of the sperm chromatin assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14:1039–49.Google Scholar
  144. 144.
    Greco E, Scarselli F, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Franco G, Anniballo N, Mendoza C, Tesarik J. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20:226–30.Google Scholar
  145. 145.
    Bungum M, Bungum L, Giwercman A. Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility. Asian J Androl. 2011;13:69–75.Google Scholar
  146. 146.
    Benchaib M, Lornage J, Mazoyer C, Lejeune H, Salle B, Francois Guerin J. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril. 2007;87:93–100.Google Scholar
  147. 147.
    Huang CC, Lin DP, Tsao HM, Cheng TC, Liu CH, Lee MS. Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril. 2005;84:130–40.Google Scholar
  148. 148.
    Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82:378–83.Google Scholar
  149. 149.
    Boe-Hansen GB, Fedder J, Ersboll AK, Christensen P. The sperm chromatin structure assay as a diagnostic tool in the human fertility clinic. Human Reprod. 2006;21:1576–82.Google Scholar
  150. 150.
    Nuñez-Calonge R, Caballero P, López-Fernández C, Guijarro JA, Fernández JL, Johnston S, Gosálvez J. An improved experimental model for understanding the impact of sperm DNA fragmentation on human pregnancy following ICSI. Reprod Sci. 2012;19: 1163–8.Google Scholar
  151. 151.
    Payne JF, Raburn DJ, Couchman GM, Price TM, Jamison MG, et al. Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques. Fertil Steril. 2005;84:356–64.Google Scholar
  152. 152.
    Chohan KR, Griffin JT, Lafromboise M, De Jonge CJ, Carrell DT. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl. 2006;27:53–9.Google Scholar
  153. 153.
    Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z. Presence of DNA strandbreaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res. 1993;207(1):202–5.Google Scholar
  154. 154.
    Henkel R, Hoogendijk CF, Bouic PJ, Kruger TF. TUNEL assay and SCSA determine different aspects of sperm DNA damage. Andrologia. 2010;42:305–13.Google Scholar
  155. 155.
    Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89:823–31.Google Scholar
  156. 156.
    Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and metaanalysis. Hum Reprod. 2008;23:2663–8.Google Scholar
  157. 157.
    Barratt CL. Male infertility joins the translational medicine revolution. Sperm DNA: from basic science to clinical reality. Mol Hum Reprod. 2010;16:1–2.Google Scholar
  158. 158.
    Lewis SE, Agbaje I, Alvarez J. Sperm DNA tests as useful adjuncts to semen analysis. Syst Biol Reprod Med. 2008;54:111–25.Google Scholar
  159. 159.
    The Practice Committee of the American Society for Reproductive Medicine. The clinical utility of sperm DNA integrity testing: a guideline. Fertil Steril. 2013;99:673–7.Google Scholar
  160. 160.
    Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, Kirkman-Brown J, Coomarasamy A. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27:2908–17.Google Scholar
  161. 161.
    Kovac JR, Pastuszak AW, Lamb DJ. The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Steril. 2013;99:998–1007.Google Scholar
  162. 162.
    Oliva R, de Mateo S, Estanyol JM. Sperm cell proteomics. Proteomics. 2009;9(4):1004–17.Google Scholar
  163. 163.
    Pilch B, Mann M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol. 2006;7:R40.Google Scholar
  164. 164.
    Redgrove KA, Nixon B, Baker MA, Hetherington L, Baker G, Liu DY, et al. The molecular chaperone HSPA2 plays a key role in regulating the expression of sperm surface receptors that mediate sperm-egg recognition. PLoS One. 2012;7:e50851.Google Scholar
  165. 165.
    Fujihara Y, Satouh Y, Inoue N, Isotani A, Ikawa M, Okabe M. SPACA1-deficient male mice are infertile with abnormally shaped sperm heads reminiscent of globozoospermia. Development. 2012;139:3583–9.Google Scholar
  166. 166.
    Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455:1054–6.Google Scholar
  167. 167.
    Deepinder F, Chowdary HT, Agarwal A. Role of metabolomic analysis of biomarkers in the management of male infertility. Expert Rev Mol Diagn. 2007;7:351–8.Google Scholar
  168. 168.
    Hollywood K, Brison DR, Goodacre R. Metabolomics: current technologies and futures trends. Proteomics. 2006;6:4716–23.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2015

Authors and Affiliations

  • Sandro C. Esteves
    • 1
  • Sidney Verza
    • 1
  • Rakesh K. Sharma
    • 2
  • Jaime Gosálvez
    • 3
  • Ashok Agarwal
    • 2
  1. 1.ANDROFERT, Referral Center for Male Reproduction, Andrology and Human Reproduction ClinicCampinasBrazil
  2. 2.Center for Reproductive Medicine, Cleveland ClinicClevelandUSA
  3. 3.Biology DepartmentGenetics Unit, Universidad Autónoma de MadridMadridSpain

Personalised recommendations