Skip to main content

Integrated Circuit Design with Micro-relays

  • Chapter
  • First Online:
Micro-Relay Technology for Energy-Efficient Integrated Circuits

Part of the book series: Microsystems and Nanosystems ((MICRONANO,volume 1))

  • 794 Accesses

Abstract

In the previous chapters, we discussed in detail many facets of micro-relay technology: from device fabrication and operation to scaling and energy implications. While the previous discussion aimed to demonstrate the viability of micro-relays as an underlying technology, the next two chapters will demonstrate how micro-relays can be integrated into the existing CMOS design infrastructure. As mentioned earlier, one of the unspoken criterion for a CMOS replacement technology is that it be compatible with the extensive existing infrastructure that has been built around CMOS technology [1]. This implied requirement is largely the reason behind choosing to explore the use of a four-terminal micro-relay first, since it shares functional similarities with an MOS transistor. In particular, we will show how micro-relays can implement many of the same functional circuits as used in CMOS at a lower energy cost while using the same simulation and design tool environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Bernstein, R.K. Cavin, W. Porod, A. Seabaugh, J. Welser, Device and architecture outlook for beyond CMOS switches. Proc. IEEE 98(12), 2169–2184 (2010)

    Article  Google Scholar 

  2. J.M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits, 2nd edn. (Prentice Hall, Upper Saddle River, NJ, 2003)

    Google Scholar 

  3. P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 5th edn. (John Wiley & Sons, New York, 2009)

    Google Scholar 

  4. T. Gabara, S. Knauer, Digitally adjustable resistors in CMOS for high-performance applications. IEEE J. Solid-State Circuits 2(8), 1176–1185 (1992)

    Article  Google Scholar 

  5. M. Banu, Y. Tsividis, Fully integrated active RC filters in MOS technology, 1983 I.E. Int. Solid-State Circuits Conf. Dig. Tech. Pap., no. 6, pp. 244–245, 1983

    Google Scholar 

  6. L. Magnelli, F. Crupi, P. Corsonello, C. Pace, G. Iannaccone, S. Member, A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference. IEEE J. Solid-State Circuits 46(2), 465–474 (2011)

    Article  Google Scholar 

  7. A. Tajalli, E. Brauer, Subthreshold source-coupled logic circuits for ultra-low-power applications. IEEE J. Solid-State Circuits 43(7), 1699–1710 (2008)

    Article  Google Scholar 

  8. L. Fay, V. Misra, R. Sarpeshkar, A micropower electrocardiogram amplifier. IEEE Trans. Biomed. Circuits Syst. 3(5), 312–20 (2009)

    Article  Google Scholar 

  9. O.H. Schmitt, A thermionic trigger. J. Sci. Instrum. 15, 24–26 (1938)

    Article  Google Scholar 

  10. R. Nathanael, V. Pott, H. Kam, J. Jeon, T.-J.K. Liu, 4-Terminal Relay Technology for Complementary Logic,” in IEDM, 2009, pp. 1–4

    Google Scholar 

  11. M. Spencer, F. Chen, C. Wang, R. Nathanael, H. Fariborzi, A. Gupta, H. Kam, V. Pott, J. Jeon, T.-J.K. Liu, D. Markovic, E. Alon, V. Stojanovic, Demonstration of integrated micro-electro-mechanical switch circuits for VLSI applications. IEEE J. Solid State Circuits 46(1), 308–320 (2011)

    Article  Google Scholar 

  12. M. Spencer, Design considerations for nano-electromechanical relay VLSI, Ph.D. Thesis, University of California, Berkeley, 2014

    Google Scholar 

  13. R. Holm, Electric Contacts (Springer-Verlag, Berlin, 1967)

    Book  Google Scholar 

  14. R. Maboudian, R.T. Howe, Critical review: adhesion in surface micromechanical structures. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 15(1), 1–20 (1997)

    Article  Google Scholar 

  15. D. Maugis, Contact, Adhesion and Rupture of Elastic Surfaces (Springer Verlag, Berlin, 2000)

    Book  Google Scholar 

  16. D. Lee, V. Pott, H. Kam, R. Nathanael, T.-J.K. Liu, AFM characterization of adhesion force in micro-relays, in Micro Electro-Mechanical Systems (MEMS), 2010 I.E. 23rd International Conference, Jan. 2010, pp. 232–235

    Google Scholar 

  17. R. Nathanael, V. Pott, E. Alon, T.-J.K. Liu, Four-terminal-relay body-biasing schemes for complementary logic circuits. IEEE Electron. Dev. Lett. 31(8), 890–892 (2010)

    Article  Google Scholar 

  18. R. Nathanael, Nano-Electro-Mechanical (NEM) Relay Devices and Technology for Ultra-Low Energy Digital Integrated Circuits (University of California, Berkeley, 2012)

    Google Scholar 

  19. H. Fariborzi, F. Chen, Design and demonstration of micro-electro-mechanical relay multipliers, in IEEE Asian Solid-State Circuits Conference, 2011, pp. 6–9

    Google Scholar 

  20. I. Sutherland, B. Sproull, D. Harris, Logical Effort: Designing Fast CMOS Circuits, 1st edn. (Morgan Kaufmann, San Francisco, 1999)

    Google Scholar 

  21. Predictive Technology Model. (Online), http://ptm.asu.edu/

  22. F. Chen, H. Kam, D. Markovic, T.-J.K. Liu, V. Stojanovic, E. Alon, Integrated circuit design with NEM relays, in 2008 IEEE/ACM International Conference on Computer-Aided Design, 2008, pp. 750–757

    Google Scholar 

  23. W. Keister, The logic of relay circuits. Trans. Am. Inst. Electr. Eng. 68(1), 571–576 (1949)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: Micro-relay Verilog-A Model

Appendix: Micro-relay Verilog-A Model

The following text is an example of a micro-relay Verilog-A model, first used in [12], suitable for circuit simulation in either Spectre or HSPICE environments.

figure a
figure b
figure c
figure d
figure e
figure f

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kam, H., Chen, F. (2015). Integrated Circuit Design with Micro-relays. In: Micro-Relay Technology for Energy-Efficient Integrated Circuits. Microsystems and Nanosystems, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2128-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2128-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2127-0

  • Online ISBN: 978-1-4939-2128-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics