Skip to main content

Bivariate Lorenz Curves Based on the Sarmanov–Lee Distribution

  • Conference paper
  • First Online:
Topics in Statistical Simulation

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 114))

Abstract

The extension of the univariate Lorenz curve to higher dimensions is not an obvious task. In this chapter, using the definition proposed by Arnold (Pareto Distributions. International Co-operative Publishing House, Fairland (1983)), closed expressions for the bivariate Lorenz curve are given, assuming that the underlying bivariate income distribution belong to the class of bivariate distributions with given marginals described by Sarmanov (Doklady Sov. Math. 168, 596–599 (1966)) and Lee (Commun. Stat. A-Theory 25, 1207–1222 (1996)). The expression of the bivariate Lorenz curve can be easily interpreted as a convex linear combination of products of classical and concentrated Lorenz curves. A closed expression for the bivariate Gini index (Arnold, Majorization and the Lorenz durve. In: Lecture Notes in Statistics, vol. 43. Springer, New York (1987)) in terms of the classical and concentrated Gini indices of the marginal distributions is given. This index can be decomposed in two factors, corresponding to the equality within and between variables. A specific model Pareto marginal distributions is studied. Other aspects are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, B.C.: Pareto Distributions. International Co-operative Publishing House, Fairland (1983)

    MATH  Google Scholar 

  2. Arnold, B.C.: Majorization and the Lorenz durve. In: Lecture Notes in Statistics, vol. 43. Springer, New York (1987)

    Google Scholar 

  3. Atkinson, A.B.: Multidimensional deprivation: contrasting social welfare and counting approaches. J. Econ. Inequal. 1, 51–65 (2003)

    Article  Google Scholar 

  4. Atkinson, A.B., Bourguignon, F.: The comparison of multi-dimensioned distributions of economic status. Rev. Econ. Stud. 49, 183–201 (1982)

    Article  Google Scholar 

  5. Bairamov, I., Kotz, S.: On a new family of positive quadrant dependent bivariate distributions. Int. Math. J. 3, 1247–1254 (2003)

    MATH  MathSciNet  Google Scholar 

  6. Gastwirth, J.L.: A general definition of the Lorenz curve. Econometrica 39, 1037–1039 (1971)

    Article  MATH  Google Scholar 

  7. Huang, J.S., Kotz, S.: Modifications of the Farlie–Gumbel–Morgenstern distributions a tough hill to climb. Metrika 49, 135–145 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kakwani, N.C.: Applications of Lorenz curves in economic analysis. Econometrica 45, 719–728 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kolm, S.C.: Multidimensional equalitarianisms. Q. J. Econ. 91, 1–13 (1977)

    Article  MATH  Google Scholar 

  10. Koshevoy, G.: Multivariate Lorenz majorization. Soc. Choice Welf. 12, 93–102 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Koshevoy, G., Mosler, K.: The Lorenz zonoid of a multivariate distribution. J. Am. Stat. Assoc. 91, 873–882 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Koshevoy, G., Mosler, K.: Multivariate gini indices. J. Multivar. Anal. 60, 252–276 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lee, M.L.T.: Properties of the Sarmanov family of bivariate distributions. Commun. Stat. A-Theory 25, 1207–1222 (1996)

    Article  MATH  Google Scholar 

  14. Maasoumi, E.: The measurement and decomposition of multi-dimensional inequality. Econometrica 54, 991–997 (1986)

    Article  MATH  Google Scholar 

  15. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and its Applications, 2nd edn. Springer, New York (2011)

    Book  Google Scholar 

  16. Mosler, K.: Multivariate dispersion, central regions and depth: the lift zonoid approach. In: Lecture Notes Statistics, vol. 165. Springer, Berlin (2002)

    Google Scholar 

  17. Sarabia, J.M.: Parametric Lorenz curves: models and applications. In: Chotikapanich, D. (ed.) Modeling Income Distributions and Lorenz Curves. Series: Economic Studies in Inequality, Social Exclusion and Well-being, vol. 4, pp. 167–190. Springer, New York (2008)

    Chapter  Google Scholar 

  18. Sarabia, J.M., Castillo, E., Pascual, M., Sarabia, M.: Bivariate income distributions with lognormal conditionals. J. Econ. Inequal. 5, 371–383 (2007)

    Article  Google Scholar 

  19. Sarabia, J.M., Castillo, E., Slottje, D.: An ordered family of Lorenz curves. J. Econ. 91, 43–60 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sarmanov, O.V.: Generalized normal correlation and two-dimensional frechet classes. Doklady Sov. Math. 168, 596–599 (1966)

    MathSciNet  Google Scholar 

  21. Slottje, D.J.: Relative price changes and inequality in the size distribution of various components. J. Bus. Econ. Stat. 5, 19–26 (1987)

    Google Scholar 

  22. Taguchi, T.: On the two-dimensional concentration surface and extensions of concentration coefficient and Pareto distribution to the two-dimensional case-I. Ann. Inst. Stat. Math. 24, 355–382 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  23. Taguchi, T.: On the two-dimensional concentration surface and extensions of concentration coefficient and Pareto distribution to the two-dimensional case-II. Ann. Inst. Stat. Math. 24, 599–619 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  24. Taguchi, T.: On the structure of multivariate concentration—some relationships among the concentration surface and two variate mean difference and regressions. Comput. Stat. Data Anal. 6, 307–334 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tsui, K.Y.: Multidimensional generalizations of the relative and absolute inequality indices: the Atkinson–Kolm–Sen approach. J. Econ. Theory 67, 251–265 (1995)

    Article  MATH  Google Scholar 

  26. Tsui, K.Y.: Multidimensional inequality and multidimensional generalized entropy measures: an axiomatic derivation. Soc. Choice Welf. 16, 145–157 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank to Ministerio de Economía y Competitividad (project ECO2010-15455) and Ministerio de Educación (FPU AP-2010-4907) for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Sarabia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Sarabia, J.M., Jordá, V. (2014). Bivariate Lorenz Curves Based on the Sarmanov–Lee Distribution. In: Melas, V., Mignani, S., Monari, P., Salmaso, L. (eds) Topics in Statistical Simulation. Springer Proceedings in Mathematics & Statistics, vol 114. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2104-1_44

Download citation

Publish with us

Policies and ethics