Simulating from a Family of Generalized Archimedean Copulas

  • Fabrizio DuranteEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 114)


We present a generalized class of bivariate Archimedean copulas. Such a class enlarges the family of Archimedean copulas since it allows the presence of a singular component along the main diagonal of the copula domain. Sampling procedures are derived in order to enhance practical application. The investigations are expected to be useful in bivariate models of lifetimes and in credit risk models of joint defaults.


Archimedean Copulas Joint Default Singular Component Tail Dependence Natural Catastrophic Events 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks Sabrina Mulinacci (University of Bologna) for useful comments and discussions about the topic of this manuscript. The author acknowledges the support of Free University of Bozen-Bolzano, via the project MODEX.


  1. 1.
    Alsina, C., Frank, M.J., Schweizer, B.: Associative Functions. Triangular Norms and Copulas. World Scientific Publishing, Hackensack (2006)zbMATHGoogle Scholar
  2. 2.
    Cherubini, U., Mulinacci, S., Gobbi, F., Romagnoli, S.: Dynamic copula methods in finance. In: Wiley Finance Series. Wiley, Chichester (2012)Google Scholar
  3. 3.
    Cuadras, C.M., Augé, J.: A continuous general multivariate distribution and its properties. Commun. Stat. Theory Methods 10(4), 339–353 (1981)CrossRefGoogle Scholar
  4. 4.
    Durante, F.: A new class of symmetric bivariate copulas. J. Nonparametr. Stat. 18(7–8), 499–510 (2006/2007)Google Scholar
  5. 5.
    Durante, F.: Construction of non-exchangeable bivariate distribution functions. Stat. Pap. 50(2), 383–391 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Durante, F., Sempi, C.: Copula and semicopula transforms. Int. J. Math. Math. Sci. 2005(4), 645–655 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Durante, F., Fernández-Sánchez, J., Sempi, C.: Multivariate patchwork copulas: a unified approach with applications to partial comonotonicity. Insur. Math. Econ. 53, 897–905 (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    Durante, F., Hofert, M., Scherer, M.: Multivariate hierarchical copulas with shocks. Methodol. Comput. Appl. Probab. 12(4), 681–694 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Durante, F., Mesiar, R., Sempi, C.: On a family of copulas constructed from the diagonal section. Soft. Comput. 10(6), 490–494 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Durante, F., Quesada-Molina, J., Sempi, C.: A generalization of the Archimedean class of bivariate copulas. Ann. Inst. Stat. Math. 59(3), 487–498 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Durante, F., Kolesárová, A., Mesiar, R., Sempi, C.: Semilinear copulas. Fuzzy Set. Syst. 159(1), 63–76 (2008)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hering, C., Hofert, M., Mai, J.F., Scherer, M.: Constructing hierarchical Archimedean copulas with Lévy subordinators. J. Multivar. Anal. 101(6), 1428–1433 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Hofert, M., Kojadinovic, I., Maechler, M., Yan, J.: Copula: multivariate dependence with copulas (2013). R package version 0.999-7
  14. 14.
    Jaworski, P., Durante, F., Härdle, W.K. (eds.): Copulae in mathematical and quantitative finance. Lecture Notes in Statistics: Proceedings, vol. 213. Springer, Berlin/Heidelberg (2013)Google Scholar
  15. 15.
    Jaworski, P., Durante, F., Härdle, W.K., Rychlik, T. (eds.): Copula theory and its applications. Lecture Notes in Statistics: Proceedings, vol. 198. Springer, Berlin/Heidelberg (2010)Google Scholar
  16. 16.
    Joe, H.: Multivariate models and dependence concepts. In: Monographs on Statistics and Applied Probability, vol. 73. Chapman & Hall, London (1997)Google Scholar
  17. 17.
    Liebscher, E.: Construction of asymmetric multivariate copulas. J. Multivar. Anal. 99(10), 2234–2250 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Mai, J.F., Scherer, M.: Simulating copulas: stochastic models, sampling algorithms, and applications. In: Series in Quantitative Finance, vol. 4. Imperial College Press, London (2012).Google Scholar
  19. 19.
    Mai, J.F., Scherer, M.: Simulating from the copula that generates the maximal probability for a joint default under given (inhomogeneous) marginals. Technical report (2013)Google Scholar
  20. 20.
    Marshall, A.W., Olkin, I.: A multivariate exponential distribution. J. Am. Stat. Assoc. 62, 30–44 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    McNeil, A.J., Nešlehová, J.: Multivariate Archimedean copulas, d-monotone functions and 1-norm symmetric distributions. Ann. Stat. 37(5B), 3059–3097 (2009)CrossRefzbMATHGoogle Scholar
  22. 22.
    Morillas, P.M.: A method to obtain new copulas from a given one. Metrika 61(2), 169–184 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Mulinacci, S.: Archimedean-based Marshall–Olkin distributions and related copula functions. Technical report (2013)Google Scholar
  24. 24.
    Nelsen, R.B.: An introduction to copulas, 2nd edn. In: Springer Series in Statistics. Springer, New York (2006)zbMATHGoogle Scholar
  25. 25.
    Okhrin, O., Okhrin, Y., Schmid, W.: On the structure and estimation of hierarchical Archimedean copulas. J. Econom. 173(2), 189–204 (2013)CrossRefMathSciNetGoogle Scholar
  26. 26.
    R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. (2013)
  27. 27.
    Valdez, E.A., Xiao, Y.: On the distortion of a copula and its margins. Scand. Actuar. J. 4, 292–317 (2011)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of Economics and ManagementFree University of Bozen-BolzanoBolzanoItaly

Personalised recommendations