Skip to main content

Engineered Cell-Based Therapies: A Vanguard of Design-Driven Medicine

  • Chapter
  • First Online:
A Systems Biology Approach to Blood

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 844))

Abstract

Engineered cell-based therapies are uniquely capable of performing sophisticated therapeutic functions in vivo, and this strategy is yielding promising clinical benefits for treating cancer. In this review, we discuss key opportunities and challenges for engineering customized cellular functions using cell-based therapy for cancer as a representative case study. We examine the historical development of chimeric antigen receptor (CAR) therapies as an illustration of the engineering design cycle. We also consider the potential roles that the complementary disciplines of systems biology and synthetic biology may play in realizing safe and effective treatments for a broad range of patients and diseases. In particular, we discuss how systems biology may facilitate both fundamental research and clinical translation, and we describe how the emerging field of synthetic biology is providing novel modalities for building customized cellular functions to overcome existing clinical barriers. Together, these approaches provide a powerful set of conceptual and experimental tools for transforming information into understanding, and for translating understanding into novel therapeutics to establish a newframework for design-driven medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen presenting cell(s)

CAR:

Chimeric antigen receptor(s)

CLL:

Chronic lymphocytic leukemia

CTL:

Cytotoxic T lymphocyte (CTL)

CTLA4:

Cytotoxic T lymphocyte antigen 4

DPLSR:

Discriminant partial least squares regression

EBV:

Epstein-Barr virus

EGFR:

Epidermal growth factor receptor

GVHD:

Graft versus host disease

HLA:

Human leukocyte antigen

IDO:

Indoleamine 2,3-dioxygenase

IL:

Interleukin

iPSC:

Induced pluripotent stem cell(s)

MDSC:

Myeloid derived suppressor cell(s)

MHC:

Major histocompatibility complex

NK:

Natural killer

ODE:

Ordinary differential equation(s)

PCA:

Principal component analysis

PD1:

Programmed cell death protein 1

PDE:

Partial differential equation(s)

scFv:

Single chain variable fragment

STAT3:

Signal transducer and activator of transcription 3

TAA:

Tumor associated antigen(s)

Th1:

Helper T cell, type 1

Th2:

Helper T cell, type 2

TIL:

Tumor infiltrating lymphocyte(s)

TCR:

T cell receptor(s)

TNP:

2,4,6-trinotrophenol

Treg:

Regulatory T cell

VH:

Variable heavy chain

VL:

Variable light chain

References

  1. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.

    CAS  PubMed  Google Scholar 

  2. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344(14):1031–7.

    CAS  PubMed  Google Scholar 

  4. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344(14):1038–42.

    CAS  PubMed  Google Scholar 

  5. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.

    CAS  PubMed  Google Scholar 

  6. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    CAS  PubMed  Google Scholar 

  7. Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876–80.

    CAS  PubMed  Google Scholar 

  8. Scaltriti M, Rojo F, Ocaña A, et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst. 2007;99(8):628–38.

    CAS  PubMed  Google Scholar 

  9. Goldman B, DeFrancesco L. The cancer vaccine roller coaster. Nat Biotechnol. 2009;27(2):129–39.

    CAS  PubMed  Google Scholar 

  10. Palucka K, Ueno H, Banchereau J. Recent developments in cancer vaccines. J Immunol. 2011;186(3):1325–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Blank CU, Hooijkaas AI, Haanen JB, Schumacher TN. Combination of targeted therapy and immunotherapy in melanoma. Cancer Immunol Immunother. 2011;60(10):1359–71.

    PubMed  Google Scholar 

  12. Burnet M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J. 1957;1(5023):841–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Thomas L Cellular and humoral aspects of the hypersensitive states. Paper presented at: Cellular and humoral aspects of the hypersensitive states: a symposium held at the NewYork Academy of Medicine. New York; 1959.

    Google Scholar 

  14. Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12(4):269–81.

    CAS  PubMed  Google Scholar 

  15. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.

    CAS  PubMed  Google Scholar 

  16. Höglund P, Glas R, Ohlén C, Ljunggren HG, Kärre K. Alteration of the natural killer repertoire in H-2 transgenic mice: specificity of rapid lymphoma cell clearance determined by the H-2 phenotype of the target. J Exp Med. 1991;174(2):327–34.

    PubMed  Google Scholar 

  17. Ahmadzadeh M, Johnson LA, Heemskerk B, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114(8):1537–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Friberg M, Jennings R, Alsarraj M, et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int J Cancer. 2002;101(2):151–5.

    CAS  PubMed  Google Scholar 

  19. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319(25):1676–80.

    CAS  PubMed  Google Scholar 

  21. Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into humans–immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med. 1990;323(9):570–8.

    CAS  PubMed  Google Scholar 

  22. Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI. Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol. 1999;163(1):507–13.

    CAS  PubMed  Google Scholar 

  23. van Loenen MM,deB,AmirAL, et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci U S A. 2010;107(24):10972–7.

    PubMed Central  PubMed  Google Scholar 

  24. Bendle GM, Linnemann C, Hooijkaas AI, et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med. 2010;16(5):565–70, 561 p following 570.

    CAS  PubMed  Google Scholar 

  25. Rosenberg SA. Of mice, not men. no evidence for graft-versus-host disease in humans receiving T-cell receptor-transduced autologous T cells. Mol Ther. 2010;18(10):1744–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Johnson LA, Morgan RA, Dudley ME, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114(3):535–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Irving BA, Weiss A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 1991;64(5):891–901.

    CAS  PubMed  Google Scholar 

  28. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86(24):10024–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993;90(2):720–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Brentjens RJ, Latouche JB, Santos E, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med. 2003;9(3):279–86.

    CAS  PubMed  Google Scholar 

  31. Park JR, Digiusto DL, Slovak M, et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther. 2007;15(4):825–33.

    CAS  PubMed  Google Scholar 

  32. Till BG, Jensen MC, Wang J, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008;112(6):2261–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17(7):2105–16.

    CAS  PubMed  Google Scholar 

  34. Rossig C, Bollard CM, Nuchtern JG, Rooney CM, Brenner MK. Epstein-Barr virus-specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood. 2002;99(6):2009–16.

    CAS  PubMed  Google Scholar 

  35. Pule MA, Savoldo B, Myers GD, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 2008;14(11):1264–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Louis CU, Savoldo B, Dotti G, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118(23):6050–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. FinneyHM,AkbarAN, LawsonAD.Activation of resting human primaryTcells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol. 2004;172(1):104–13.

    CAS  PubMed  Google Scholar 

  38. Milone MC, Fish JD, Carpenito C, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17(8):1453–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Finney HM, Lawson AD, Bebbington CR, Weir AN. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol. 1998;161(6):2791–97.

    CAS  PubMed  Google Scholar 

  40. Hombach A, Wieczarkowiecz A, Marquardt T, et al. Tumor-specific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule. J Immunol. 2001;167(11):6123–31.

    CAS  PubMed  Google Scholar 

  41. Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol. 2002;20(1):70–5.

    CAS  PubMed  Google Scholar 

  42. Pulè MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther. 2005;12(5):933–41.

    PubMed  Google Scholar 

  43. Loskog A, Giandomenico V, Rossig C, Pule M, Dotti G, Brenner MK. Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia. 2006;20(10):1819–28.

    CAS  PubMed  Google Scholar 

  44. Kochenderfer JN, Wilson WH, Janik JE, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Kochenderfer JN, Dudley ME, Feldman SA, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Zhong XS, Matsushita M, Plotkin J, Riviere I, Sadelain M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol Ther. 2010;18(2):413–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Till BG, Jensen MC, Wang J, et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood. 2012;119(17):3940–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra5.

    Google Scholar 

  52. Sadelain M, Brentjens R, Rivière I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol. 2009;21(2):215–23.

    CAS  PubMed  Google Scholar 

  53. Jena B, Dotti G, Cooper LJ. Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood. 2010;116(7):1035–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. June CH, Blazar BR, Riley JL. Engineering lymphocyte subsets: tools, trials and tribulations. Nat Rev Immunol. 2009;9(10):704–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Kohn DB, Dotti G, Brentjens R, et al. CARson track in the clinic. MolTher. 2011;19(3):432–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5(177):177ra38.

    PubMed Central  PubMed  Google Scholar 

  57. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Ertl HC, Zaia J, Rosenberg SA, et al. Considerations for the clinical application of chimeric antigen receptor T cells: observations from a recombinant DNA Advisory Committee Symposium held June 15, 2010. Cancer Res. 2011;71(9):3175–81.

    Google Scholar 

  59. Gajewski TF. Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin Cancer Res. 2007;13(18 Pt 1):5256–61.

    CAS  PubMed  Google Scholar 

  60. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27(45):5904–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007;117(5):1155–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Kitano H. Computational systems biology. Nature. 2002;420(6912):206–10.

    CAS  PubMed  Google Scholar 

  63. Kitano H. Systems biology: a brief overview. Science. 2002;295(5560):1662–4.

    CAS  PubMed  Google Scholar 

  64. Arkin AP, Schaffer DV. Network news: innovations in 21st century systems biology. Cell. 2011;144(6):844–9.

    CAS  PubMed  Google Scholar 

  65. van Riel NA. Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Brief Bioinform. 2006;7(4):364–74.

    PubMed  Google Scholar 

  66. Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK. Physicochemical modelling of cell signalling pathways. Nat Cell Biol. 2006;8(11):1195–203.

    CAS  PubMed  Google Scholar 

  67. Price ND, Shmulevich I. Biochemical and statistical network models for systems biology. Curr Opin Biotechnol. 2007;18(4):365–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Janes KA, Yaffe MB. Data-driven modelling of signal-transduction networks. Nat Rev Mol Cell Biol. 2006 ;7(11):820–8.

    CAS  PubMed  Google Scholar 

  69. Janes KA, Kelly JR, Gaudet S, Albeck JG, Sorger PK, LauffenburgerDA. Cue-signal-response analysis of TNF-induced apoptosis by partial least squares regression of dynamic multivariate data. J Comput Biol. 2004;11(4):544–61.

    CAS  PubMed  Google Scholar 

  70. Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science. 2005;310(5754):1646–53.

    CAS  PubMed  Google Scholar 

  71. Sachs K, Gifford D, Jaakkola T, Sorger P, Lauffenburger DA. Bayesian network approach to cell signaling pathway modeling. Sci STKE. 2002;2002(148):pe38.

    PubMed  Google Scholar 

  72. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP. Causal protein-signaling networks derived from multiparameter single-cell data. Science. 2005;308(5721):523–9.

    CAS  PubMed  Google Scholar 

  73. Fowler KD, Kuchroo VK, Chakraborty AK. A model for how signal duration can determine distinct outcomes of gene transcription programs. PLoS ONE. 2012;7(3):e33018.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Edelman LB, Eddy JA, Price ND. In silico models of cancer. Wiley Interdiscip Rev Syst Biol Med. 2010;2(4):438–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. de Pillis LG, RadunskayaAE,Wiseman CL.Avalidated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 2005;65(17):7950–8.

    CAS  PubMed  Google Scholar 

  76. Mallet DG, De Pillis LG. A cellular automata model of tumor-immune system interactions. J Theor Biol. 2006;239(3):334–50.

    CAS  PubMed  Google Scholar 

  77. Eikenberry S, Thalhauser C, Kuang Y. Tumor-immune interaction, surgical treatment, and cancer recurrence in a mathematical model of melanoma. PLoS Comput Biol. 2009;5(4):e1000362.

    PubMed Central  PubMed  Google Scholar 

  78. Woelke AL, Murgueitio MS, Preissner R. Theoretical modeling techniques and their impact on tumor immunology. Clin Dev Immunol. 2010;2010:271794.

    PubMed Central  PubMed  Google Scholar 

  79. Bendall SC, Simonds EF, Qiu P, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332(6030):687–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A. 2012;109(5):1607–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. de Bakker PI, McVean G, Sabeti PC, et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet. 2006;38(10):1166–72.

    PubMed Central  PubMed  Google Scholar 

  82. Benichou J, Ben-Hamo R, Louzoun Y, Efroni S. Rep-Seq: uncovering the immunological repertoire through next-generation sequencing. Immunology. 2012;135(3):183–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Pasca SP, Portmann T, Voineagu I, et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med. 2011;17(12):1657–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Swierniak A, Kimmel M, Smieja J. Mathematical modeling as a tool for planning anticancer therapy. Eur J Pharmacol. 2009;625(1–3):108–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Roeder I, Horn M, Glauche I, Hochhaus A, Mueller MC, Loeffler M. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat Med. 2006;12(10):1181–4.

    CAS  PubMed  Google Scholar 

  86. Adjei AA, Christian M, Ivy P. Novel designs and end points for phase II clinical trials. Clin Cancer Res. ;15(6):1866–72.

    Google Scholar 

  87. Dancey JE, Dobbin KK, Groshen S, et al. Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents. Clin Cancer Res. 2010;16(6):1745–55.

    CAS  PubMed  Google Scholar 

  88. Freedman AN, Sansbury LB, Figg WD, et al. Cancer pharmacogenomics and pharmacoepidemiology: setting a research agenda to accelerate translation. J Natl Cancer Inst. 2010;102(22):1698–705.

    PubMed Central  PubMed  Google Scholar 

  89. Cohen AL, Soldi R, Zhang H, et al. A pharmacogenomic method for individualized prediction of drug sensitivity. Mol Syst Biol. 2011;7:513.

    PubMed Central  PubMed  Google Scholar 

  90. Gardner SN. Modeling multi-drug chemotherapy: tailoring treatment to individuals. J Theor Biol. 2002;214(2):181–207.

    CAS  PubMed  Google Scholar 

  91. Querec TD, Akondy RS, Lee EK, et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol. 2009;10(1):116–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Chmielecki J, Foo J, Oxnard GR, et al. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci Transl Med. 2011;3(90):90ra59.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Haeno H, Gonen M, Davis MB, Herman JM, Iacobuzio-Donahue CA, Michor F. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell. 2012;148(1-2):362–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Kronik N, Kogan Y, Vainstein V, Agur Z. Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol Immunother. 2008;57(3):425–39.

    PubMed  Google Scholar 

  95. Nani F, Freedman HI. A mathematical model of cancer treatment by immunotherapy. Math Biosci. 2000;163(2):159–99.

    CAS  PubMed  Google Scholar 

  96. Leon K, Garcia K, Carneiro J, Lage A. How regulatory CD25+CD4+ T cells impinge on tumor immunobiology: the differential response of tumors to therapies. J Immunol. 2007;179(9):5659–68.

    CAS  PubMed  Google Scholar 

  97. Eftimie R, Bramson JL, Earn DJ. Modeling anti-tumor Th1 and Th2 immunity in the rejection of melanoma. J Theor Biol. 2010;265(3):467–80.

    CAS  PubMed  Google Scholar 

  98. Eftimie R, Bramson JL, Earn DJ. Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull Math Biol. 2011;73(1):2–32.

    PubMed  Google Scholar 

  99. Joshi B, Wang X, Banerjee S, Tian H, Matzavinos A, Chaplain MA. On immunotherapies and cancer vaccination protocols: a mathematical modelling approach. J Theor Biol. 2009;259(4):820–7.

    PubMed  Google Scholar 

  100. Kiran KL, Lakshminarayanan S. Global sensitivity analysis and model-based reactive scheduling of targeted cancer immunotherapy. Biosystems. 2010;101(2):117–26.

    PubMed  Google Scholar 

  101. Kronik N, Kogan Y, Elishmereni M, Halevi-Tobias K, Vuk-Pavlovic S, Agur Z. Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models. PLoS ONE. 2010;5(12):e15482.

    PubMed Central  PubMed  Google Scholar 

  102. Grove A. Rethinking clinical trials. Science. 2011;333(6050):1679.

    CAS  PubMed  Google Scholar 

  103. Carome M, Wolfe S. Rethinking clinical trials: phase 1 studies insufficient. Science. 2011;334(6061):1346.

    CAS  PubMed  Google Scholar 

  104. Marcus NA. Rethinking clinical trials: change is coming. Science. 2011;334(6061):1346.

    CAS  PubMed  Google Scholar 

  105. Borhani DW, Butts JA. Rethinking clinical trials: biology’s mysteries. Science. 2011;334(6061):1346–7.

    CAS  PubMed  Google Scholar 

  106. Fritz BR, Timmerman LE, Daringer NM, Leonard JN, Jewett MC. Biology by design: from top to bottom and back. J Biomed Biotechnol. 2010;2010:232016.

    PubMed Central  PubMed  Google Scholar 

  107. Ruder WC, Lu T, Collins JJ. Synthetic biology moving into the clinic. Science. 2011;333(6047):1248–52.

    CAS  PubMed  Google Scholar 

  108. Chen YY, Smolke CD. From DNA to targeted therapeutics: bringing synthetic biology to the clinic. Sci Transl Med. 2011;3(106):106ps42.

    PubMed Central  PubMed  Google Scholar 

  109. Purnick PE, Weiss R. The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol. 2009;10(6):410–22.

    CAS  PubMed  Google Scholar 

  110. Chen YY, Jensen MC, Smolke CD. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc Natl Acad Sci U S A. 2010;107(19):8531–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Wei P,Wong WW, Park JS, et al. Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. Nature. 2012;488(7411):384–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Ye H, Daoud-El Baba M, Peng RW, Fussenegger M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science. 2011;332(6037):1565–8.

    CAS  PubMed  Google Scholar 

  113. Schwartzentruber DJ, Kirkwood JM, Guarino MJ, et al. Immunotherapy of advanced melanoma by intratumoral injections of autologous, purified dendritic cells transduced with gene construct of interleukin-12, with dose-dependent expression under the control of an oral activator ligand. J Clin Oncol. 2011;29(suppl):abstr 2540.

    Google Scholar 

  114. Murugesan S, Chan T, Reed C, et al. Combined direct intratumoral adenoviral delivery and production of Rheoswitch®-regulated IL-12 and IFNα enhances antitumor activity in lung and breast cancer models. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 March 31–April 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 1546.

    Google Scholar 

  115. Herberman RB, Bi MX, Moreno M, et al. Local and systemic anti-tumor immunity is induced by Rheoswitch regulated IL-12 production after intra-tumoral injection of adenovirus vector as well as vector-transduced dendritic cells. Mol Ther. 2011;19(7):1380.

    Google Scholar 

  116. Kemmer C, Gitzinger M, Daoud-El Baba M, Djonov V, Stelling J, Fussenegger M. Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat Biotechnol. 2010;28(4):355–60.

    CAS  PubMed  Google Scholar 

  117. Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science. 2011;333(6047):1307–11.

    CAS  PubMed  Google Scholar 

  118. Rinaudo K, Bleris L, Maddamsetti R, Subramanian S,Weiss R, Benenson Y.Auniversal RNA i-based logic evaluator that operates in mammalian cells. Nat Biotechnol. 2007;25(7):795–801.

    CAS  PubMed  Google Scholar 

  119. Culler SJ, Hoff KG, Smolke CD. Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science. 2010;330(6008):1251–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Bayer TS, Smolke CD. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol. 2005;23(3):337–43.

    CAS  PubMed  Google Scholar 

  121. Kramer BP, Fischer C, Fussenegger M. BioLogic gates enable logical transcription control in mammalian cells. Biotechnol Bioeng. 2004;87(4):478–84.

    CAS  PubMed  Google Scholar 

  122. Lohmueller JJ, Armel TZ, Silver PA. A tunable zinc finger-based framework for boolean logic computation in mammalian cells. Nucleic Acids Res. 2012;40(11):5180–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med. 2013;5(215):215ra172.

    PubMed Central  PubMed  Google Scholar 

  124. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31(1):71–5.

    CAS  PubMed  Google Scholar 

  125. Daringer NM, Dudek RM, Schwarz KA, Leonard JN. Modular extracellular sensor architecture for engineering mammalian cell-based devices. ACS Synth Biol. 2014. [Epub ahead of press].

    Google Scholar 

  126. Park TS, Rosenberg SA, Morgan RA. Treating cancer with genetically engineered T cells. Trends Biotechnol. 2011;29(11):550–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Dotti G, Savoldo B, Brenner M. Fifteen years of gene therapy based on chimeric antigen receptors: “are we nearly there yet?”. Hum Gene Ther. 2009;20(11):1229–39.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

RMD and JNL received support from the DefenseAdvanced Research Projects Agency, Award number W911NF-11-2-0066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua N. Leonard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dudek, R., Chuang, Y., Leonard, J. (2014). Engineered Cell-Based Therapies: A Vanguard of Design-Driven Medicine. In: Corey, S., Kimmel, M., Leonard, J. (eds) A Systems Biology Approach to Blood. Advances in Experimental Medicine and Biology, vol 844. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2095-2_18

Download citation

Publish with us

Policies and ethics