Skip to main content

A Systems Biology Approach to Iron Metabolism

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 844)

Abstract

Iron is critical to the survival of almost all living organisms. However, inappropriately low or high levels of iron are detrimental and contribute to a wide range of diseases. Recent advances in the study of iron metabolism have revealed multiple intricate pathways that are essential to the maintenance of iron homeostasis. Further, iron regulation involves processes at several scales, ranging from the subcellular to the organismal. This complexity makes a systems biology approach crucial, with its enabling technology of computational models based on a mathematical description of regulatory systems. Systems biology may represent a new strategy for understanding imbalances in iron metabolism and their underlying causes.

Keywords

  • Hydroxyl radical
  • Heme
  • Phagocytose
  • Constant decay rate
  • Petri nets
  • Homeostasis
  • Transferrin
  • Erythroid bone marrow
  • Erythrocytes
  • Phagocytosis
  • Plasma
  • Continuous versus discrete models

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-2095-2_10
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-2095-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5
Fig. 10.6

References

  1. Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics. 2009;2:2.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  2. Hower V, et al. A general map of iron metabolism and tissue-specific subnetworks. Mol Biosyst. 2009;5(5):422–43.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  3. Josephs HW. Absorption of iron as a problem in human physiology; a critical review. Blood. 1958;13(1):1–54.

    CAS  PubMed  Google Scholar 

  4. Laufberger V. Sur la cristallisation de la ferritine. Soc Chim Biol. 1937;19:1575–82.

    CAS  Google Scholar 

  5. Feder JN, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13(4):399–408.

    CAS  PubMed  CrossRef  Google Scholar 

  6. Trowbridge IS, Omary MB. Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin. Proc Natl Acad Sci U S A. 1981;78(5):3039–43.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  7. Hentze MW, Kuhn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A. 1996;93(16):8175–82.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  8. Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000;275(26):19906–12.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Donovan A, et al. Positional cloning of zebrafish Fpn1 identifies a conserved vertebrate iron exporter. Nature. 2000;403(6771):776–81.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Krause A, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000;480(2–3):147–50.

    CAS  PubMed  CrossRef  Google Scholar 

  11. McKie AT, et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell. 2000;5(2):299–309.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Park CH, et al. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001;276(11):7806–10.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Pigeon C, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276(11):7811–9.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Andrews NC. Forging a field: the golden age of iron biology. Blood. 2008;112(2):219–30.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  15. Andrews NC, Schmidt PJ. Iron homeostasis. Annu Rev Physiol. 2007;69:69–85.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117(17):4425–33.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  17. Hentze MW, et al. Two to tango: regulation of mammalian iron metabolism. Cell. 2010;142(1):24–38.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Muckenthaler MU, Galy B, Hentze MW. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr. 2008;28:197–213.

    CAS  PubMed  CrossRef  Google Scholar 

  19. De Domenico I, Ward DM, Kaplan J. Hepcidin regulation: ironing out the details. J Clin Invest. 2007;117(7):1755–8.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  20. Gunshin H, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388(6641):482–8.

    CAS  PubMed  CrossRef  Google Scholar 

  21. Fleming MD, et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet. 1997;16(4):383–6.

    CAS  PubMed  Google Scholar 

  22. Canonne-Hergaux F, et al. Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood. 1999;93(12):4406–17.

    CAS  PubMed  Google Scholar 

  23. Oakhill JS, et al. Functional characterization of human duodenal cytochrome b (Cybrd1): redox properties in relation to iron and ascorbate metabolism. Biochim Biophys Acta. 2008;1777(3):260–8.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Turi JL, et al. Duodenal cytochrome b: a novel ferrireductase in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2006;291(2):L272–80.

    CAS  PubMed  CrossRef  Google Scholar 

  25. Ferris CD, et al. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat Cell Biol. 1999;1(3):152–7.

    CAS  PubMed  CrossRef  Google Scholar 

  26. Arosio P, Levi S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim Biophys Acta. 2010;1800(8):783–92.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Theil EC. Ferritin: at the crossroads of iron and oxygen metabolism. J Nutr. 2003; 133(5 Suppl 1):1549S–53S.

    CAS  PubMed  Google Scholar 

  28. Vulpe CD, et al. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet. 1999;21(2):195–9.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Schade AL, Caroline L. An Iron-binding component in human blood plasma. Science. 1946;104(2702):340–1.

    CAS  CrossRef  Google Scholar 

  30. Ohgami RS, et al. The Steap proteins are metalloreductases. Blood. 2006;108(4):1388–94.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  31. Shaw GC, et al. Mitoferrin is essential for erythroid iron assimilation. Nature. 2006;440(7080):96–100.

    CAS  PubMed  CrossRef  Google Scholar 

  32. Krishnamurthy P, Xie T, Schuetz JD. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther. 2007;114(3):345–58.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Keel SB, et al. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science. 2008;319(5864):825–8.

    CAS  PubMed  CrossRef  Google Scholar 

  34. Donovan A, et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1(3):191–200.

    CAS  PubMed  CrossRef  Google Scholar 

  35. Johnson MB, Enns CA. Diferric transferrin regulates transferrin receptor 2 protein stability. Blood. 2004;104(13):4287–93.

    CAS  PubMed  CrossRef  Google Scholar 

  36. Kawabata H, et al. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem. 1999;274(30):20826–32.

    CAS  PubMed  CrossRef  Google Scholar 

  37. Robb A, Wessling-Resnick M. Regulation of transferrin receptor 2 protein levels by transferrin. Blood. 2004;104(13):4294–9.

    CAS  PubMed  CrossRef  Google Scholar 

  38. Liuzzi JP, et al. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci U S A. 2006;103(37):13612–7.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  39. Nemeth E, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.

    CAS  PubMed  CrossRef  Google Scholar 

  40. De Domenico I, et al. Hepcidin-induced internalization of ferroportin requires binding and cooperative interaction with Jak2. Proc Natl Acad Sci U S A. 2009;106(10):3800–5.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  41. Qiao B, et al. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab. 2012;15(6):918–24.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  42. Ross SL, et al. Molecular mechanism of hepcidin-mediated ferroportin internalization requires ferroportin lysines, not tyrosines or JAK-STAT. Cell Metab. 2012;15(6):905–17.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Babitt JL, et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet. 2006;38(5):531–9.

    CAS  PubMed  CrossRef  Google Scholar 

  44. Andriopoulos B Jr, et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet. 2009;41(4):482–7.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  45. Meynard D, et al. Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat Genet. 2009;41(4):478–81.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Wang RH, et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab. 2005;2(6):399–409.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Lee DH, et al. Neogenin inhibits HJV secretion and regulates BMP-induced hepcidin expression and iron homeostasis. Blood. 2010;115(15):3136–45.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  48. Zhang AS, et al. Hemojuvelin-neogenin interaction is required for bone morphogenic protein-4-induced hepcidin expression. J Biol Chem. 2009;284(34):22580–9.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  49. Silvestri L, et al. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008;8(6):502–11.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  50. Gao J, et al. Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression. Cell Metab. 2009;9(3):217–27.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  51. Gao J, et al. Hepatocyte-targeted HFE and TFR2 control hepcidin expression in mice. Blood. 2010;115(16):3374–81.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  52. Wallace DF, et al. Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology. 2009;50(6):1992–2000.

    CAS  PubMed  CrossRef  Google Scholar 

  53. Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006;108(9):3204–9.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  54. Pietrangelo A, et al. STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology. 2007;132(1):294–300.

    CAS  PubMed  CrossRef  Google Scholar 

  55. Verga Falzacappa MV, et al. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood. 2007;109(1):353–8.

    PubMed  CrossRef  Google Scholar 

  56. Andrews NC. Anemia of inflammation: the cytokine-hepcidin link. J Clin Invest. 2004;113(9):1251–3.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  57. Shayeghi M, et al. Identification of an intestinal heme transporter. Cell. 2005;122(5):789–801.

    CAS  PubMed  CrossRef  Google Scholar 

  58. Qiu A, et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell. 2006;127(5):917–28.

    CAS  PubMed  CrossRef  Google Scholar 

  59. Andrews NC. When is a heme transporter not a heme transporter? When it’s a folate transporter. Cell Metab. 2007;5(1):5–6.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Rajagopal A, et al. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature. 2008;453(7198):1127–31.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  61. Ferreira GC, Gong J. 5-Aminolevulinate synthase and the first step of heme biosynthesis. J Bioenerg Biomembr. 1995;27(2):151–9.

    CAS  PubMed  CrossRef  Google Scholar 

  62. Yoshida T, et al. Human heme oxygenase cDNA and induction of its mRNA by hemin. Eur J Biochem. 1988;171(3):457–61.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Andrews NC. Disorders of iron metabolism. N Engl J Med. 1999;341(26):1986–95.

    CAS  PubMed  CrossRef  Google Scholar 

  64. Allen KJ, et al. Iron-overload-related disease in HFE hereditary hemochromatosis. N Engl J Med. 2008;358(3):221–30.

    CAS  PubMed  CrossRef  Google Scholar 

  65. Roetto A, et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet. 2003;33(1):21–2.

    CAS  PubMed  CrossRef  Google Scholar 

  66. Papanikolaou G, et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet. 2004;36(1):77–82.

    CAS  PubMed  CrossRef  Google Scholar 

  67. Niederkofler V, Salie R, Arber S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest. 2005;115(8):2180–6.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  68. Nemeth E, et al. Hepcidin is decreased in TFR2 hemochromatosis. Blood. 2005;105(4):1803–6.

    CAS  PubMed  CrossRef  Google Scholar 

  69. Sham RL, et al. Hereditary hemochromatosis due to resistance to hepcidin: high hepcidin concentrations in a family with C326 S ferroportin mutation. Blood. 2009;114(2):493–4.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  70. Harris ZL, et al. Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci U S A. 1995;92(7):2539–43.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  71. Yoshida K, et al. A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet. 1995;9(3):267–72.

    CAS  PubMed  CrossRef  Google Scholar 

  72. Beutler E, et al. Molecular characterization of a case of atransferrinemia. Blood. 2000;96(13):4071–4.

    CAS  PubMed  Google Scholar 

  73. Nemeth E, et al. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003;101(7):2461–3.

    CAS  PubMed  CrossRef  Google Scholar 

  74. Nemeth E, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113(9):1271–6.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  75. Torti SV, Torti FM. Ironing out cancer. Cancer Res. 2011;71(5):1511–4.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  76. Kotsopoulos J, et al. Plasma micronutrients, trace elements, and breast cancer in BRCA1 mutation carriers: an exploratory study. Cancer Causes Control. 2012;23(7):1065–74.

    PubMed  CrossRef  Google Scholar 

  77. Hann HW, Stahlhut MW, Blumberg BS. Iron nutrition and tumor growth: decreased tumor growth in iron-deficient mice. Cancer Res. 1988;48(15):4168–70.

    CAS  PubMed  Google Scholar 

  78. Richardson DR. Iron chelators as therapeutic agents for the treatment of cancer. Crit Rev Oncol Hematol. 2002;42(3):267–81.

    CAS  PubMed  CrossRef  Google Scholar 

  79. Faulk WP, Hsi BL, Stevens PJ. Transferrin and transferrin receptors in carcinoma of the breast. Lancet. 1980;2(8191):390–2.

    CAS  PubMed  CrossRef  Google Scholar 

  80. Shan L, et al. Visualizing head and neck tumors in vivo using near-infrared fluorescent transferrin conjugate. Mol Imaging. 2008;7(1):42–9.

    CAS  PubMed  Google Scholar 

  81. Pinnix ZK, et al. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med. 2010;2(43):43–56.

    CrossRef  Google Scholar 

  82. Miller LD, et al. An iron regulatory gene signature predicts outcome in breast cancer. Cancer Res. 2011;71(21):6728–37.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  83. Laubenbacher R, et al. A systems biology view of cancer. Biochim Biophys Acta. 2009;1796(2):129–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Lao BJ, Kamei DT. A compartmental model of iron regulation in the mouse. J Theor Biol. 2006;243(4):542–54.

    CAS  PubMed  CrossRef  Google Scholar 

  85. Rivera S, et al. Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs. Blood. 2005;106(6):2196–9.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  86. Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117(3):285–97.

    CAS  PubMed  CrossRef  Google Scholar 

  87. Lopes TJ, et al. Systems analysis of iron metabolism: the network of iron pools and fluxes. BMC Syst Biol. 2010;4:112.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  88. Schumann K, et al. A method to assess 59Fe in residual tissue blood content in mice and its use to correct 59Fe-distribution kinetics accordingly. Toxicology. 2007;241(1–2):19–32.

    PubMed  CrossRef  Google Scholar 

  89. Chifman J, et al. The core control system of intracellular iron homeostasis: a mathematical model. J Theor Biol. 2012;300:91–9.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  90. Epsztejn S, et al. Fluorescence analysis of the labile iron pool of mammalian cells. Anal Biochem. 1997;248(1):31–40.

    CAS  PubMed  CrossRef  Google Scholar 

  91. Formanowicz D, et al. Petri net based model of the body iron homeostasis. J Biomed Inform. 2007;40(5):476–85.

    CAS  PubMed  CrossRef  Google Scholar 

  92. Formanowicz D, et al. Some aspects of the anemia of chronic disorders modeled and analyzed by petri net based approach. Bioprocess Biosyst Eng. 2011;34(5):581–95.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  93. Sackmann A, et al. An analysis of the petri net based model of the human body iron homeostasis process. Comput Biol Chem. 2007;31(1):1–10.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants NIH R21 CA156133–01A1 (R.L., S.V.T.) and NIH Cancer Biology Training Grant T32-CA079448 (J.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzy V. Torti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chifman, J., Laubenbacher, R., Torti, S. (2014). A Systems Biology Approach to Iron Metabolism. In: Corey, S., Kimmel, M., Leonard, J. (eds) A Systems Biology Approach to Blood. Advances in Experimental Medicine and Biology, vol 844. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2095-2_10

Download citation