Skip to main content

Systems Hematology: An Introduction

  • Chapter
  • First Online:
A Systems Biology Approach to Blood

Abstract

Hematologists have traditionally studied blood and its components by simplifying it into its components and functions. A variety of new techniques have generated large and complex datasets. Coupled to an appreciation of blood as a dynamic system, a new approach in systems hematology is needed. Systems hematology embraces the multi-scale complexity with a combination of mathematical, engineering, and computational tools for constructing and validating models of biological phenomena. The validity of mathematical modeling in hematopoiesis was established early by the pioneering work of Till and McCulloch. This volume seeks to introduce to the various scientists and physicians to the multi-faceted field of hematology by highlighting recent works in systems biology. Deterministic, stochastic, statistical, and network-based models have been used to better understand a range of topics in hematopoiesis, including blood cell production, the periodicity of cyclical neutropenia, stem cell production in response to cytokine administration, and the emergence of drug resistance. Future advances require technological improvements in computing power, imaging, and proteomics as well as greater collaboration between experimentalists and modelers. Altogether, systems hematology will improve our understanding of normal and abnormal hematopoiesis, better define stem cells and their daughter cells, and potentially lead to more effective therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qian WJ, Monroe ME, Liu T, et al. Quantitative proteome analysis of human plasma following in vivo lipopolysaccharide administration using 16O/18O labeling and the accurate mass and time tag approach. Mol Cell Proteomics. 2005;4(5):700–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Laslo P, Pongubala JM, Lancki DW, Singh H. Gene regulatory networks directing myeloid and lymphoid cell fates within the immune system. Semin Immunol. 2008;20(4):228–35.

    Article  CAS  PubMed  Google Scholar 

  3. Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W. Rules for modeling signal-transduction systems. Sci STKE. 2006;17(344):re6.

    Google Scholar 

  4. Roeder I, Loeffler M. A novel dynamic model of hematopoietic stem cell organization based on the concept of within-tissue plasticity. Exp Hematol. 2002;30(8):853–61.

    Article  CAS  PubMed  Google Scholar 

  5. Till JE, McCulloch EA, Siminovitch L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci U S A. 1964;51:29–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ogawa M. Hemopoietic stem cells: stochastic differentiation and humoral control of proliferation. Environ Health Perspect. 1989;80:199–207.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ogawa M, Pharr PN, Suda T. Stochastic nature of stem cell functions in culture. Prog Clin Biol Res. 1985;184:11–9.

    CAS  PubMed  Google Scholar 

  8. Vogel H, Niewisch H, Matioli G. The self renewal probability of hemopoietic stem cells. J Cell Physiol. 1968;72(3):221–8.

    Article  CAS  PubMed  Google Scholar 

  9. Kestler HA, Wawra C, Kracher B, Kuhl M. Network modeling of signal transduction: establishing the global view. Bioessays. 2008;30(11–12):1110–25.

    Article  CAS  PubMed  Google Scholar 

  10. Kirouac DC, Madlambayan GJ, Yu M, Sykes EA, Ito C, Zandstra PW. Cell-cell interaction networks regulate blood stem and progenitor cell fate. Mol Syst Biol. 2009;5:293.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132(4):631–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. McCulloch EA. Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982). Blood. 1983;62(1):1–13.

    CAS  PubMed  Google Scholar 

  13. McCulloch EA. Stem cell renewal and determination during clonal expansion in normal and leukaemic haemopoiesis. Cell Prolif. 1993;26(5):399–425.

    Article  CAS  PubMed  Google Scholar 

  14. Mehr R, Agur Z. Bone marrow regeneration under cytotoxic drug regimens: behaviour ranging from homeostasis to unpredictability in a model for hemopoietic differentiation. Biosystems. 1992;26(4):231–7.

    Article  CAS  PubMed  Google Scholar 

  15. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994;1(8):661–73.

    Article  CAS  PubMed  Google Scholar 

  16. Novak JP, Stewart CC. Stochastic versus deterministic in haemopoiesis: what is what? Br J Haematol. 1991;78(2):149–54.

    Article  CAS  PubMed  Google Scholar 

  17. Ogawa M. Stochastic model revisited. Int J Hematol. 1999;69(1):2–5.

    CAS  PubMed  Google Scholar 

  18. Quesenberry P, Abedi M, Dooner M, et al. The marrow cell continuum: stochastic determinism. Folia Histochem Cytobiol. 2005;43(4):187–90.

    CAS  PubMed  Google Scholar 

  19. Abkowitz JL, Catlin SN, Guttorp P. Evidence that hematopoiesis may be a stochastic process in vivo. Nat Med. 1996;2(2):190–7.

    Article  CAS  PubMed  Google Scholar 

  20. Roeder I, Glauche I. Towards an understanding of lineage specification in hematopoietic stem cells: a mathematical model for the interaction of transcription factors GATA-1 and PU.1. J Theor Biol. 2006;241(4):852–65.

    Article  CAS  PubMed  Google Scholar 

  21. Palani S, Sarkar C. Integrating extrinsic and intrinsic cues into a minimal model of lineage commitment for hematopoietic progenitors. PLoS Comput Biol. 2009;5:e1000518.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature. 2008;453(7194):544–7.

    Article  CAS  PubMed  Google Scholar 

  23. Huang S, Guo YP, May G, Enver T. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev Biol. 2007;305(2):695–713.

    Article  CAS  PubMed  Google Scholar 

  24. Becker AJ, Mc CE, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197:452–4.

    Article  CAS  PubMed  Google Scholar 

  25. Siminovitch L, McCulloch EA, Till JE. The distribution of colony-forming cells among spleen colonies. J Cell Physiol. 1963;62:327–36.

    Article  CAS  PubMed  Google Scholar 

  26. Fall C, Marland E, Wagner J, Tyson J. Computational cell biology. Vol. 20. New York: Springer; 2005.

    Google Scholar 

  27. Wilkinson D. Stochastic modelling for systems biology. New York: Chapman & Hall/CRC; 2006.

    Google Scholar 

  28. Palsson B. Systems biology: properties of reconstructed networks. Cambridge: Cambridge University Press; 2006.

    Book  Google Scholar 

  29. Pearl J. Models, reasoning and inference. New York: Cambridge University Press; 2000.

    Google Scholar 

  30. Barabasi AL. Scale-free networks: a decade and beyond. Science. 2009;325(5939):412–3.

    Article  CAS  PubMed  Google Scholar 

  31. Amaral LA, Diaz-Guilera A, Moreira AA, Goldberger AL, Lipsitz LA. Emergence of complex dynamics in a simple model of signaling networks. Proc Natl Acad Sci U S A. 2004;101(44):15551–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Le Novere NH, Mi H, et al. The systems biology graphical notation. Nat Biotechnol. 2009;27(8):735–41.

    Article  CAS  PubMed  Google Scholar 

  33. HHMI/AAMC. Scientific foundations for the future physicians. 2009.http://www.aamc.org/download/271072/data/scientificfoundationsforfuturephysicians.pdfAccessed 12 Oct 2014.

  34. Council NR. BIO2010: transforming undergraduate education of future research biologists. Washington, DC: National Academies Press; 2003.

    Google Scholar 

  35. Wingreen N, Botstein D. Back to the future: education for systems-level biologists. Nat Rev Mol Cell Biol. 2006;7(11):829–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Killcoyne S, Carter GW, Smith J, Boyle J. Cytoscape: a community-based framework for network modeling. Methods Mol Biol. 2009;563:219–39.

    Article  CAS  PubMed  Google Scholar 

  37. Meier-Schellersheim M, Xu X, Angermann B, Kunkel EJ, Jin T, Germain RN. Key role of local regulation in chemosensing revealed by a new molecular interaction-based modeling method. PLoS Comput Biol. 2006;2(7):e82.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Mendes P, Hoops S, Sahle S, Gauges R, Dada J, Kummer U. Computational modeling of biochemical networks using COPASI. Methods Mol Biol. 2009;500:17–59.

    Article  CAS  PubMed  Google Scholar 

  39. Moore JH. Bioinformatics. J Cell Physiol. 2007;213(2):365–9.

    Article  CAS  PubMed  Google Scholar 

  40. Alon U. An introduction to systems biology: design principles of biological circuits. Boca Raton: Chapman & Hall/CRC; 2007.

    Google Scholar 

  41. Palsson BO. Systems biology, properties of reconstructed networks. New York: Cambridge University Press; 2006.

    Book  Google Scholar 

  42. Kitano H. Foundations of systems biology. Cambridge: MIT Press; 2001.

    Google Scholar 

  43. Polanski A, Kimmel M. Bioinformatics. New York: Springer; 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Joel Corey MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Corey, S., Kimmel, M., Leonard, J. (2014). Systems Hematology: An Introduction. In: Corey, S., Kimmel, M., Leonard, J. (eds) A Systems Biology Approach to Blood. Advances in Experimental Medicine and Biology, vol 844. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2095-2_1

Download citation

Publish with us

Policies and ethics