Cloud Storage over Multiple Data Centers

  • Shuai Mu
  • Maomeng Su
  • Pin Gao
  • Yongwei Wu
  • Keqin Li
  • Albert Y. Zomaya


Cloud storage has become a booming trend in the last few years. Individual developers, companies, organizations, and even governments have either taken steps or at least shown great interests in data migration from self-maintained infrastructure into cloud.


Cloud Provider Cloud Storage Strong Consistency Erasure Code Virtual Machine Monitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Varia, Jinesh. “Cloud architectures.” White Paper of Amazon, jineshvaria. s3. amazonaws. com/public/cloudarchitectures-varia. pdf (2008).Google Scholar
  2. 2.
    Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand, Anitha Aduzsumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan, Leonidas Rigas. Windows Azure Storage: a highly available cloud storage service with strong consistency. Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles (SOSP’11), pages 143–157, 2011.Google Scholar
  3. 3.
    G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, W. Vogels. Dynamo: amazonʼs highly available key-value store. Proceedings of twenty-first ACM SIGOPS Symposium on Operating Systems Principles (SOSP’ 07), pages 205–220, 2007.Google Scholar
  4. 4.
    Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung. The Google file system. Proceedings of the nineteenth ACM Symposium on Operating Systems Principles (SOSP’ 03), pages 29–43, 2003.Google Scholar
  5. 5.
    Chang, Fay, et al. “Bigtable: A distributed storage system for structured data.” ACM Transactions on Computer Systems (TOCS) 26.2 (2008): 4.Google Scholar
  6. 6.
    James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, Dale Woodford, D. Woodford. Spanner: Googleʼs globally-distributed database. Proceedings of the 10th USENIX conference on Operating Systems Design and Implementation (OSDI’ 12), pages 251–264, 2012.Google Scholar
  7. 7.
    Yair Sovran, Russell Power, Marcos K. Aguilera, Jinyang Li. Transactional storage for geo-replicated systems. Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles (SOSP’11), pages 385–400, 2011.Google Scholar
  8. 8.
    Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, David G. Andersen. Donʼt settle for eventual: scalable causal consistency for wide-area storage with COPS. Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles (SOSP’11), pages 401–416, 2011.Google Scholar
  9. 9.
    Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguica, Rodrigo Rodrigues. Making geo-replicated systems fast as possible, consistent when necessary. Proceedings of the 10th USENIX conference on Operating Systems Design and Implementation (OSDI’12), pages 265–278, 2012.Google Scholar
  10. 10.
    Luiz André Barroso, Urs Hölzle. The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines. Morgan & Claypool Publishers, DOI: 10.2200/S00193ED1V01Y200905CAC006, 2009.Google Scholar
  11. 11.
    Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James Larson, Jean-Michel Leon, Yawei Li, Alexander Floyd, Vadim Yushprakh. Megastore: Providing Scalable, Highly Available Storage for Interactive Services. In 5th Conference on Innovative Data Systems Research, pages 223–234, 2011.Google Scholar
  12. 12.
    Avinash Lakshman, Prashant Malik. Cassandra: a decentralized structured storage system. ACM SIGOPS Operating Systems Review, 44(2), pages 35–40, 2010.Google Scholar
  13. 13.
    D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, C. H. Hauser. Managing update conflicts in Bayou, a weakly connected replicated storage system. Proceedings of the fifteenth ACM Symposium on Operating Systems Principles (SOSP’95), pages 172–182, 1995.Google Scholar
  14. 14.
    Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon, Hans-Arno, Nick Puz, Daniel Weaver, Ramana Yerneni. PNUTS: Yahoo!ʼs hosted data serving platform. Proceedings of the VLDB Endowment, 1(2), pages 1277–1288, 2008.Google Scholar
  15. 15.
    Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: a tutorial. ACM Computing Surveys (CSUR), 22(4), pages 299–319, 1990.Google Scholar
  16. 16.
    Leslie Lamport. Paxos made simple. ACM SIGACT News Distributed Computing Column, 32(4), pages 18–25, 2001.Google Scholar
  17. 17.
    Tushar D. Chandra, Robert Griesemer, Joshua Redstone. Paxos made live: an engineering perspective. Proceedings of the twenty-sixth annual ACM Symposium on Principles of Distributed Computing, pages 398–407, 2007.Google Scholar
  18. 18.
    Mike Burrows. The Chubby lock service for loosely-coupled distributed systems. Proceedings of the 7th symposium on Operating Systems Design and Implementation (OSDI’06), pages 335–350, 2006.Google Scholar
  19. 19.
    Jeff Dean. Designs, Lessons, and Advice from Building Large Distributed Systems. Keynote from LADIS, 2009.Google Scholar
  20. 20.
    Stacy Patterson, Aaron J. Elmore, Faisal Nawab, Divyakant Agrawal, Amr El Abbadi. Serializability, not serial: concurrency control and availability in multi-datacenter datastores. Proceedings of the VLDB Endowment, 5(11), PAGES 1459–1470, 2012.Google Scholar
  21. 21.
    Werner Vogels. Eventually consistent. Communications of the ACM—Rural engineering development, 52(1), pages 40–44, 2009.Google Scholar
  22. 22.
    Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, Thomas Anderson. Scalable consistency in Scatter. Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles (SOSP’11), pages 15–28, 2011.Google Scholar
  23. 23.
    Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes, Sean Quinlan. Availability in globally distributed storage systems. Proceedings of the 9th USENIX conference on Operating Systems Design and Implementation (OSDI’10), No. 1–7, 2010.Google Scholar
  24. 24.
    Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Carlos Maltzahn. CRUSH: controlled, scalable, decentralized placement of replicated data. Proceedings of the 2006 ACM/IEEE conference on Supercomputing, 2006.Google Scholar
  25. 25.
    Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, David G. Andersen. Stronger Semantics for Low-Latency Geo-Replicated Storage. Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI’13), 2013.Google Scholar
  26. 26.
    Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, Harbinder Bhogan. Volley: automated data placement for geo-distributed cloud services. Proceedings of the 7th USENIX conference on Networked Systems Design and Implementation (NSDI’10), 2010.Google Scholar
  27. 27.
    Anton Beloglazov, Rajkumar Buyya. Energy Efficient Resource Management in Virtualized Cloud Data Centers. Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pages 826–831, 2010.Google Scholar
  28. 28.
    Zhichao Li, Kevin M. Greenan, Andrew W. Leung, Erez Zadok. Power Consumption in Enterprise-Scale Backup Storage Systems. Proceedings of the Tenth USENIX Conference on File and Storage Technologies (FAST ’12), pages 65–71, 2012.Google Scholar
  29. 29.
    J. G. Koomey. Growth in data center electricity use 2005 to 2010. Technical report, Standord University, 2011.Google Scholar
  30. 30.
    Yi Lin, Bettina Kemm, Marta Patiño-Martínez, Ricardo Jiménez-Peris. Middleware based data replication providing snapshot isolation. Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages 419–430, 2005.Google Scholar
  31. 31.
    Daniel Peng, Frank Dabek. Large-scale incremental processing using distributed transactions and notifications. Proceedings of the 9th USENIX conference on Operating Systems Design and Implementation, 2010.Google Scholar
  32. 32.
    Cong Wang, Qian Wang, and Kui Ren, Wenjing Lou. Privacy-Preserving Public Auditing for Data Storage Security in Cloud Computing. Proceedings of IEEE INFOCOM, 2010.Google Scholar
  33. 33.
    S. Subashini, V. Kavitha. A survey on security issues in service delivery models of cloud computing. Journal of Network and Computer Applications, 34(1), pages 1–11, 2011.Google Scholar
  34. 34.
    H. Takabi, J.B.D. Joshi, G. Ahn. Security and Privacy Challenges in Cloud Computing Environments. IEEE Security and Privacy, 8(6), pages 24–31, 2010.Google Scholar
  35. 35.
    Kevin D. Bowers, Ari Juels, Alina Oprea. HAIL: a high-availability and integrity layer for cloud storage. Proceedings of the 16th ACM conference on Computer and Communications Security (CCS’09), pages 187–198, 2009.Google Scholar
  36. 36.
    Fengzhe Zhang, Jin Chen, Haibo Chen, Binyu Zang. CloudVisor: retrofitting protection of virtual machines in multi-tenant cloud with nested virtualization. Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles (SOSP’11), pages 203–216, 2011.Google Scholar
  37. 37.
    Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A. Waldspurger, Dan Boneh, Jeffrey Dwoskin, Dan R.K. Ports. Overshadow: a virtualization-based approach to retrofitting protection in commodity operating systems. Proceedings of the 13th international conference on Architectural Support for Programming Languages and Operating Systems, pages 2–13, 2008.Google Scholar
  38. 38.
    Wassim Itani, Ayman Kayssi, Ali Chehab. Privacy as a Service: Privacy-Aware Data Storage and Processing in Cloud Computing Architectures. Proceedings of Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, pages 711–716, 2009.Google Scholar
  39. 39.
    Shucheng Yu, Cong Wang, Kui Ren, Wenjing Lou. Achieving Secure, Scalable, and Fine-grained Data Access Control in Cloud Computing. Proceedings of IEEE INFOCOM, 2010.Google Scholar
  40. 40.
    Vipul Goyal, Omkant Pandey, Amit Sahai, Brent Waters. Attribute-based encryption for fine-grained access control of encrypted data. Proceedings of the 13th ACM conference on Computer and Communications Security (CCS’06), pages 89–98, 2006.Google Scholar
  41. 41.
    Myong H. Kang, Joon S. Park, Judith N. Froscher. Access control mechanisms for inter-organizational workflow. Proceedings of the sixth ACM symposium on Access Control Models and Technologies, pages 66–74, 2001.Google Scholar
  42. 42.
    H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, P. Yew, and W. Mao. Tamper-resistant execution in an untrusted operating system using a virtual machine monitor. Parallel Processing Institute Technical Report, Number: FDUPPITR-2007-0801, Fudan University, 2007.Google Scholar
  43. 43.
    Lein Harn, Hung-Yu Lin. A cryptographic key generation scheme for multilevel data security. Computer & Security, 9(6), pages 539–546, 1990.Google Scholar
  44. 44.
    Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, Reto Strobl. Asynchronous verifiable secret sharing and proactive cryptosystems. Proceedings of the 9th ACM conference on Computer and Communications Security (CCS’02), pages 88–97, 2002.Google Scholar
  45. 45.
    Phillip Rogaway. Bucket hashing and its application to fast message authentication. CRYPTO, volume 963 of LNCS, pages 29–42, 1995.Google Scholar
  46. 46.
    David Lie, Chandramohan A. Thekkath, Mark Horowitz. Implementing an untrusted operating system on trusted hardware. Proceedings of the nineteenth ACM Symposium on Operating Systems Principles (SOSP’03), pages 178–192, 2003.Google Scholar
  47. 47.
    Stephen T. Jones, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. Geiger: monitoring the buffer cache in a virtual machine environment. Proceedings of the 12th international conference on Architectural Support for Programming Languages and Operating Systems, pages 14–24, 2006.Google Scholar
  48. 48.
    Abraham Silberschatz, Peter Baer Galvin, Greg Gagne. Operating System Concepts. John Wiley & Sons, 2009.Google Scholar
  49. 49.
    Guillaume Duc, Ronan Keryell. CryptoPage: an Efficient Secure Architecture with Memory Encryption, Integrity and Information Leakage Protection. Proceedings of the 22nd Annual Computer Security Applications Conference (ACSAC’06), pages 483–492, 2006.Google Scholar
  50. 50.
    David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John Mitchell, Mark Horowitz. Architectural support for copy and tamper resistant software. ACM SIGPLAN Notices, 35(11), pages 168–177, 2000.Google Scholar
  51. 51.
    Hou Qinghua, Wu Yongwei, Zheng Weimin, Yang Guangwen. A Method on Protection of User Data Privacy in Cloud Storage Platform. Journal of Computer Research and Development, 48(7), pages 1146–1154, 2011.Google Scholar
  52. 52.
    Reed I S, Solomon G. Polynomial codes over certain finite fields [J]. Journal of the Society for Industrial & Applied Mathematics, 1960, 8(2): 300–304.Google Scholar
  53. 53.
    Roth R M, Lempel A. On MDS codes via Cauchy matrices [J]. Information Theory, IEEE Transactions on, 1989, 35(6): 1314–1319.Google Scholar
  54. 54.
    Blaum M, Farrell P, Tilborg H. Array Codes [M]. Amsterdam, Netherlands: Elsevier Science B V, 1998.Google Scholar
  55. 55.
    Blaum M, Brady J, Bruck J, et al. EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures[J]. Computers, IEEE Transactions on, 1995, 44(2): 192–202.Google Scholar
  56. 56.
    Xu L, Bruck J. X-code: MDS array codes with optimal encoding[J]. Information Theory, IEEE Transactions on, 1999, 45(1): 272–276.Google Scholar
  57. 57.
    Huang, Cheng, et al. “Erasure coding in windows azure storage.” USENIX ATC. 2012.Google Scholar
  58. 58.
    Dimakis A G, Godfrey P B, Wu Y, et al. Network coding for distributed storage systems[J]. Information Theory, IEEE Transactions on, 2010, 56(9): 4539–4551.Google Scholar
  59. 59.
    Khan, Osama, et al. “Rethinking erasure codes for cloud file systems: Minimizing I/O for recovery and degraded reads.” Proc. of USENIX FAST. 2012.Google Scholar
  60. 60.
    Xiang, Liping, et al. “Optimal recovery of single disk failure in RDP code storage systems.” ACM SIGMETRICS Performance Evaluation Review. Vol. 38. No. 1. ACM, 2010.Google Scholar
  61. 61.
    Brewer, Eric A. “Towards robust distributed systems.” PODC. 2000.Google Scholar
  62. 62.
    Vogels, Werner. “Eventually consistent.” Communications of the ACM 52.1 (2009): 40–44.Google Scholar
  63. 63.
    Birman, Kenneth P. “Consistency in Distributed Systems.” Guide to Reliable Distributed Systems. Springer London, 2012. 457–470.Google Scholar
  64. 64.
    Bermbach, David, and Stefan Tai. “Eventual consistency: How soon is eventual? An evaluation of Amazon S3ʼs consistency behavior.” Proceedings of the 6th Workshop on Middleware for Service Oriented Computing. ACM, 2011.Google Scholar
  65. 65.
    Zhou, Yuanyuan, et al. “Relaxed consistency and coherence granularity in DSM systems: A performance evaluation.” ACM SIGPLAN Notices. Vol. 32. No. 7. ACM, 1997.Google Scholar
  66. 66.
    Adve, Sarita V., and Kourosh Gharachorloo. “Shared memory consistency models: A tutorial.” computer 29.12 (1996): 66–76.Google Scholar
  67. 67.
    Serious cloud failures and disasters of 2011.
  68. 68.
    D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow, “Blueprint for the intercloud—protocols and formats for cloud computing interoperability,” Internet and Web Applications and Services, International Conference on, vol. 0, pp. 328–336, 2009.Google Scholar
  69. 69.
    R. G. Dimakis, P. B. Godfrey, Y. Wu, M. O. Wainwright, and K. Ramch, “Network coding for distributed storage systems,” in In Proc. of IEEE INFOCOM, 2007.Google Scholar
  70. 70.
    L. Rizzo, “Effective erasure codes for reliable computer communication protocols,” SIGCOMM Comput. Commun. Rev.,vol. 27, no. 2, pp. 24–36, Apr. 1997. [Online]. Available:
  71. 71.
    H. P. Anvin. The mathematics of raid-6.
  72. 72.
    H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication: A quantitative comparison,” Peer-to-Peer Systems, pp. 328–337, 2002.Google Scholar
  73. 73.
    M. Vrable, S. Savage, and G. M. Voelker, “Cumulus: Filesystem backup to the cloud,” Trans. Storage, vol. 5, no. 4, pp. 14:1–14:28, Dec. 2009. [Online]. Available:
  74. 74.
    P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: waitfree coordination for internet-scale systems,” in Proceedings of the 2010 USENIX conference on USENIX annual technical conference, ser. USENIXATC’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 11–11.Google Scholar
  75. 75.
    L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4, pp. 18–25, 2001.Google Scholar
  76. 76.
    N. A. Lynch, Distributed algorithms. Morgan Kaufmann, 1996.Google Scholar
  77. 77.
    A. Bessani, M. Correia, B. Quaresma, F. Andr´e, and P. Sousa, “Depsky: dependable and secure storage in a cloud-of-clouds,” in Proceedings of the sixth conference on Computer systems, ser. EuroSys’11. New York, NY, USA: ACM, 2011, pp. 31–46.Google Scholar
  78. 78.
    W. Vogels, “Eventually consistent,” Communications of the ACM, vol. 52, no. 1, pp. 40–44, 2009.Google Scholar
  79. 79.
    M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free synchronization: Double-ended queues as an example,” in Distributed Computing Systems, 2003. Proceedings. 23rd International Conference on. IEEE, 2003, pp. 522–529.Google Scholar
  80. 80.
    Csc cloud usage index.
  81. 81.
    D. Ionescu. (Oct. 2009) Microsoft red-faced after massive sidekick data loss. pcworld.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shuai Mu
    • 1
    • 2
  • Maomeng Su
    • 3
  • Pin Gao
    • 3
  • Yongwei Wu
    • 3
  • Keqin Li
    • 4
  • Albert Y. Zomaya
    • 5
  1. 1.Department of Computer Science and TechnologyTsinghua National Laboratory for Information Science and Technology (TNLIST), Tsinghua UniversityBeijingChina
  2. 2.Research Institute of Tsinghua University in ShenzhenShenzhenChina
  3. 3.Tsinghua UniversityBeijingChina
  4. 4.Department of Computer ScienceState University of New York at New PaltzNew PaltzUSA
  5. 5.Centre for Distributed and High Performance Computing School of Information TechnologiesThe University of SydneySydneyAustralia

Personalised recommendations