Skip to main content

Experimental Models and Clinical Tools to Assess Nerve Regeneration and Functional Outcomes

  • Chapter
  • First Online:
The Science of Reconstructive Transplantation

Abstract

The success of vascularized composite allotransplantation (VCA) is dependent on adequate peripheral nerve regeneration for optimal outcomes. Because so much of the benefit derived from VCA is derived from peripheral nerve regeneration, systematically monitoring this process clinically is of utmost importance, particularly with regards to determining prognosis. As such, more attention must be placed on developing new strategies to enhance peripheral nerve regeneration and graft innervation. The clinical evaluation of nerve regeneration can be complex due to the multiple problems that nonfunctioning nerves may cause. Indeed, a nonfunctional nerve does not only cause problems from absence of function but may impart unique impairment from pain, sympathetic, and/or sudomotor dysfunction. Therefore, evaluation of nerve regeneration should combine functional testing, patient outcome reported testing, and more objective neurophysiologic and/or imaging-based testing. This chapter provides an overview of the experimental as well as clinical methodologies available for the evaluation of peripheral nerve repair and regeneration with special attention placed on nerve regeneration in the setting of VCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gold BG, Storm-Dickerson T, Austin DR. The immunosuppressant FK506 increases functional recovery and nerve regeneration following peripheral nerve injury. Restor Neurol Neurosci. 1994;6:287–96.

    CAS  PubMed  Google Scholar 

  2. Udina E, Rodriguez FJ, Verdu E, et al. FK506 enhances regeneration of axons across long peripheral nerve gaps repaired with collagen guides seeded with allogeneic Schwann cells. Glia. 2004;47:120–9.

    Article  PubMed  Google Scholar 

  3. Doolabh VB, Mackinnon SE. FK506 accelerates functional recovery following nerve grafting in a rat model. Plast Reconstr Surg. 1999;103:1928–36.

    Article  CAS  PubMed  Google Scholar 

  4. Moore AM, Borschel GH, Santosa KA, et al. A transgenic rat expressing green fluorescent protein (GFP) in peripheral nerves provides a new hindlimb model for the study of nerve injury and regeneration. J Neurosci Methods 2012;204:19–27.

    Article  CAS  PubMed  Google Scholar 

  5. Lanzetta M, Petruzzo P, Margreiter R, et al. The international registry on hand and composite tissue transplantation. Transplantation. 2005;79:1210–4.

    Article  PubMed  Google Scholar 

  6. Lanzetta M, Petruzzo P, Dubernard JM, et al. Second report (1998–2006) of the international registry of hand and composite tissue transplantation. Transpl Immunol. 2007;18:1–6.

    Article  PubMed  Google Scholar 

  7. Ravindra KV, Buell JF, Kaufman CL, et al. Hand transplantation in the United States: experience with 3 patients. Surgery. 2008;144:638–43; discussion 643–34.

    Article  PubMed  Google Scholar 

  8. Sucher R, Oberhuber R, Margreiter C, et al. Orthotopic hind-limb transplantation in rats. J Vis Exp. 2010 Jul 12;(41).

    Google Scholar 

  9. Tuffaha S, Quigley M, Ng T, et al. The effect of chondroitinase on nerve regeneration following composite tissue allotransplantation. J Hand Surg. 2011;36:1447–52.

    Article  Google Scholar 

  10. Hunter DA, Moradzadeh A, Whitlock EL, et al. Binary imaging analysis for comprehensive quantitative histomorphometry of peripheral nerve. J Neurosci Methods. 2007;166:116–24.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Mackinnon SE, Dellon AL, O’Brien JP. Changes in nerve fiber numbers distal to a nerve repair in the rat sciatic nerve model. Muscle Nerve. 1991;14:1116–22.

    Article  CAS  PubMed  Google Scholar 

  12. Brushart TM. Motor axons preferentially reinnervate motor pathways. J Neurosci. 1993;13:2730–8.

    CAS  PubMed  Google Scholar 

  13. Brushart TM, Mesulam MM. Alteration in connections between muscle and anterior horn motoneurons after peripheral nerve repair. Science. 1980;208:603–5.

    Article  CAS  PubMed  Google Scholar 

  14. Magill CK, Tong A, Kawamura D, et al. Reinnervation of the tibialis anterior following sciatic nerve crush injury: a confocal microscopic study in transgenic mice. Exp Neurol. 2007;207:64–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. de Medinaceli L, Freed WJ, Wyatt RJ. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol. 1982;77:634–43.

    Article  CAS  PubMed  Google Scholar 

  16. Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg. 1989;83:129–38.

    Article  CAS  PubMed  Google Scholar 

  17. Dellon AL, Mackinnon SE. Sciatic nerve regeneration in the rat. validity of walking track assessment in the presence of chronic contractures. Microsurgery. 1989;10:220–5.

    Article  CAS  PubMed  Google Scholar 

  18. Santos PM, Williams SL, Thomas SS. Neuromuscular evaluation using rat gait analysis. J Neurosci Methods. 1995;61:79–84.

    Article  CAS  PubMed  Google Scholar 

  19. Walker JL, Evans JM, Meade P, et al. Gait-stance duration as a measure of injury and recovery in the rat sciatic nerve model. J Neurosci Methods. 1994;52:47–52.

    Article  CAS  PubMed  Google Scholar 

  20. Lin FM, Pan YC, Hom C, et al. Ankle stance angle: a functional index for the evaluation of sciatic nerve recovery after complete transection. J Reconstr Microsurg 1996;12:173–7.

    Article  CAS  PubMed  Google Scholar 

  21. de Ruiter GC, Spinner RJ, Alaid AO, et al. Two-dimensional digital video ankle motion analysis for assessment of function in the rat sciatic nerve model. J Peripher Nerv Syst 2007;12:216–22.

    Article  PubMed  Google Scholar 

  22. Egeland BM, Urbanchek MG, Peramo A, et al. In vivo electrical conductivity across critical nerve gaps using poly(3,4-ethylenedioxythiophene)-coated neural interfaces. Plast Reconstr Surg 2010;126:1865–73.

    Article  CAS  PubMed  Google Scholar 

  23. Werdin F, Grussinger H, Jaminet P, et al. An improved electrophysiological method to study peripheral nerve regeneration in rats. J Neurosci Methods. 2009;182:71–77.

    Article  PubMed  Google Scholar 

  24. Navarro X, Udina E. Chapter 6: methods and protocols in peripheral nerve regeneration experimental research: part III-electrophysiological evaluation. Intl Rev Neurobiol. 2009;87:105–26.

    Article  Google Scholar 

  25. Fu SY, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged axotomy. J Neurosci 1995;15:3876–85.

    CAS  PubMed  Google Scholar 

  26. Fu SY, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci 1995;15:3886–95.

    CAS  PubMed  Google Scholar 

  27. Li QT, Zhang PX, Yin XF, et al. Functional recovery of denervated skeletal muscle with sensory or mixed nerve protection: a pilot study. PLoS One. 2013;8:e79746.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kemp SW, Webb AA, Dhaliwal S, et al. Dose and duration of nerve growth factor (NGF) administration determine the extent of behavioral recovery following peripheral nerve injury in the rat. Exp Neurol. 2011;229:460–70.

    Article  CAS  PubMed  Google Scholar 

  29. Koka R, Hadlock TA. Quantification of functional recovery following rat sciatic nerve transection. Exp Neurol. 2001;168:192–5.

    Article  CAS  PubMed  Google Scholar 

  30. Washington KM, Solari MG, Sacks JM, et al. A model for functional recovery and cortical reintegration after hemifacial composite tissue allotransplantation. Plast Reconstr Surg. 2009;123:26S–33S.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Unadkat JV, Bourbeau D, Afrooz PN, et al. Functional outcomes following multiple acute rejections in experimental vascularized composite allotransplantation. Plast Reconstr Surg 2013;131:720e–30e.

    Article  Google Scholar 

  32. Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg Am. 2000; 25:391–414.

    Article  CAS  PubMed  Google Scholar 

  33. Sumarto A. Peripheral nerve injuries: an international survey of current treatments and future perspectives. J Reconstr Microsurg. 2009;25:339–44.

    Article  PubMed  Google Scholar 

  34. Sunderland S. Nerve and nerve injuries. 2nd edition. Edinburgh: Churchill Livingstone; 1978.

    Google Scholar 

  35. Wujek JR, Lasek RJ. Correlation of axonal regeneration and slow component B in two branches of a single axon. J Neurosci. 1983;2:243–51.

    Google Scholar 

  36. Sunderland S. Factors influencing the course of regeneration and quality of recovery after nerve suture. Brain. 1952;75:19–54.

    Article  CAS  PubMed  Google Scholar 

  37. Brushart TM. Nerve repair. New York, NY: Oxford University Press; 2011.

    Google Scholar 

  38. Gordon T, Tyreman N, Raji MA. The basis for diminished functional recovery after delayed peripheral nerve repair. J Neurosci. 2011;31:5325–34.

    Article  CAS  PubMed  Google Scholar 

  39. Szabo RM, Slater RR, Farver TB, et al. The value of diagnostic testing in carpal tunnel syndrome. J Hand Surg Am. 1999 Jul;24(4):704–14.

    Article  CAS  PubMed  Google Scholar 

  40. Shores JT, Lee WP. An evidence-based approach to carpal tunnel syndrome. Plast Reconstr Surg. 2010 Dec;126(6):2196–204.

    Article  CAS  PubMed  Google Scholar 

  41. Keith MW, Masear V, Chung K, et al. Diagnosis of carpal tunnel syndrome. J Am Acad Orthop Surg. 2009;17:389–96.

    PubMed  Google Scholar 

  42. Jerosch-Herold C. Assessment of sensibility after nerve injury and repair: a systematic review of evidence for validity, reliability and responsiveness of tests. J Hand Surg Br. 2005 Jun;30(3):252–64.

    Article  CAS  PubMed  Google Scholar 

  43. Rosen B, Lundborg G. A model instrument for the documentation of outcome after nerve repair. J Hand Surg Am. 2000;25:535–43.

    Article  CAS  PubMed  Google Scholar 

  44. Novak CB, Kelly L, Mackinnon SE. Sensory recovery after median nerve grafting. J Hand Surg Am. 1992;17:59–68.

    Article  CAS  PubMed  Google Scholar 

  45. Leechavengvongs S, Ngamlamiat K, Malungpaishrope K, et al. End-to-side radial sensory to median nerve transfer to restore sen- sation and relieve pain in C5 and C6 nerve root avulsion. J Hand Surg Am. 2011;36:209–15.

    Article  PubMed  Google Scholar 

  46. Brandsma JW, Schreuders TA, Birke JA, et al. Manual muscle strength testing: intraobserver and interobserver reliabilities for the intrinsic muscles of the hand. J Hand Ther. 1995;8:185–90.

    Article  CAS  PubMed  Google Scholar 

  47. Concannon MJ, Petroski GF, Puckett CL. The predictive value of electrodiagnostic studies in carpal tunnel syndrome. Plast Reconstr Surg. 1997;100:1452–8.

    Article  CAS  PubMed  Google Scholar 

  48. Chaudhry V, Cornblath DR, Mellitis ED, et al. Inter- and intra-examiner reliability of nerve conduction measurements in normal subjects. Ann Neurol. 1991;30:841–3.

    Article  CAS  PubMed  Google Scholar 

  49. Strickland JW, Gozani SN. Accuracy of in-office nerve conduction studies for median neuropathy: a meta-analysis. J Hand Surg Am. 2011 Jan;36(1):52–60.

    Article  PubMed  Google Scholar 

  50. Kara M, Ozcakar L, De Muynck M, et al. Musculoskeletal ultrasound for peripheral nerve lesions. Eur J Phys Rehabil Med. 2012;48:665–74; quiz 708.

    CAS  PubMed  Google Scholar 

  51. Boon AJ, Smith J, Harper CM. Ultrasound applications in electrodiagnosis. Phys Med Rehab 2012;4: 37–49.

    Google Scholar 

  52. Koenig RW, Pedro MT, Heinen CP, et al. High-resolution ultrasonography in evaluating peripheral nerve entrapment and trauma. Neurosurg Focus. 2009;26:E13.

    Article  PubMed  Google Scholar 

  53. Chalian M, Behzadi AH, Williams EH, et al. High-resolution magnetic resonance neurography in upper extremity neuropathy. Neuroimaging Clin N Am. 2014;24:109–25.

    Article  PubMed  Google Scholar 

  54. Moore AM, Ray WZ, Chenard KE, et al. Nerve allotransplantation as it pertains to composite tissue transplantation. Hand (NY). 2009;4:239–44.

    Google Scholar 

  55. Brenner MJ, Mackinnon SE, Rickman SR, et al. FK506 and anti-CD40 ligand in peripheral nerve allotransplantation. Restor Neurol Neurosci. 2005;23:237–49.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaimie T. Shores MD FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tuffaha, S., Broyles, J., Shores, J. (2015). Experimental Models and Clinical Tools to Assess Nerve Regeneration and Functional Outcomes. In: Brandacher, G. (eds) The Science of Reconstructive Transplantation. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2071-6_19

Download citation

Publish with us

Policies and ethics