Skip to main content

Migration and Communication Patterns in Skin Rejection

  • Chapter
  • First Online:
The Science of Reconstructive Transplantation

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 679 Accesses

Abstract

Skin is the most immunogenic tissue of the human body. Its external location makes it the first barrier for invading pathogens and protects the individual from physical and chemical injury. In this chapter, we review skin immunology and its impact in reconstructive transplantation. The skin-resident immune system, mechanisms of leukocyte trafficking, the role of antigen-presenting cells, and potential tolerogenic mechanisms of the skin are highlighted in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nestle F, Di Meglio P, Qin J, et al. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9:679–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Uchi H, Terao H, Koga T, et al. Cytokines and chemokines in the epidermis. J Dermatol Sci. 2000;24:29.

    Article  Google Scholar 

  3. Gaspari A, Katz S. Induction and functional characterization of class II MHC (Ia) antigens on murine keratinocytes. J Immunol. 1988;140:2956.

    CAS  PubMed  Google Scholar 

  4. Wang L, Bursch L, Kissenpfennig A, et al. Langerin expressing cells promote skin immune responses under defined conditions. J Immunol. 2008;180:4722–7.

    Article  CAS  PubMed  Google Scholar 

  5. James W, Bullard D, Hickery M. Critical role of the alpha 4 integrin/VCAM-1 pathway in cerebral leukocyte trafficking in lupus-prone MRL/fas(lpr) mice. J Immunol 2003;170:520–7.

    Article  CAS  PubMed  Google Scholar 

  6. Deane J, Hickery M. Molecular mechanisms of leukocyte trafficking in T-cell-mediated skin inflammation: insights from intravital imaging. Exp Rev Mol Med 2009;11:25.

    Article  Google Scholar 

  7. Clark R, Chong B, Mirchandani N, et al. The vast majority of CLA + T cells are resident in normal skin. J Immunol. 2006;176:4431–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hirahara K, Lui L, Clark R, et al. The majority of human peripheral blood CD4+ CD25 high Foxp3+ regulatory T cells bear functional skin-homing receptors. J Immunol. 2006;177:4488–94.

    Article  CAS  PubMed  Google Scholar 

  9. Billingham R, Brent L. Quantitative studies on tissue transplantation immunity. IV. Induction of tolerance in newborn mice and studies on the phenomenon of runt disease. Philos Trans R Soc Lond B Biol Sci 1956;242:357–414.

    Article  Google Scholar 

  10. Pescovitz M, Auchincloss H, Thistlethwaite R, et al. Transplantation in miniature swine: acceptance of class I antigen mismatched renal allografts. Transpl Proc 1983;15:1124.

    Google Scholar 

  11. Mathes D, Randolph M, Solari M, et al. Split tolerance to a composite tissue allograft in a swine model. Transplantation. 2003;75:25–31.

    Article  CAS  PubMed  Google Scholar 

  12. Petruzzo P, Badet L, Gazarian A, et al. Bilateral hand transplantation: six years after the first case. Am J Transplant. 2006;6:1718–24.

    Article  CAS  PubMed  Google Scholar 

  13. Schneeberger S, Gorantla V, Brandacher G, et al. Upper-extremity transplantation using a cell-based protocol to minimize immunosuppression. Ann Surg 2013;257:345–51.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Gorantla V, Brandacher G, Schneeberger S, et al. Favoring the risk-benefit balance for upper extremity transplantation—the Pittsburgh protocol. Hand Clin. 2011;27(4):511–20.

    Article  PubMed  Google Scholar 

  15. Eljaafari A, Badet L, Kanitakis J, et al. Isolation of regulatory T cells in the skin of a human hand-allograft, up to six years posttransplantation. Transplantation. 2006;82:1764–8.

    Article  CAS  PubMed  Google Scholar 

  16. Hautz T, Zelger B, Grahammer J, et al. Molecular markers and targeted therapy of skin rejection in composite tissue allotransplantation. Am J Transplant. 2010;10:1200–9.

    Article  CAS  PubMed  Google Scholar 

  17. Muthukumar T, Dadhania D, Ding R, et al. Messenger RNA for Foxp3 in the urine of renal-allograft recipients. N Engl J Med. 2005;353:2342–51.

    Article  CAS  PubMed  Google Scholar 

  18. Petruzzo P, Lanzetta M, Dubernard J, et al. The International Registry on Hand and Composite Tissue Transplantation. Transplantation. 2010;90:1590–4.

    Article  PubMed  Google Scholar 

  19. Kanitakis J. The challenge of dermatopathological diagnosis of composite tissue allograft rejection: a review. J Cutan Pathol. 2008;35:738–44.

    Article  PubMed  Google Scholar 

  20. Cendales L, Kanitakis J, Schneeberger S, et al. The Banff 2007 working classification of skin-containing composite tissue allograft pathology. Am J Transplant. 2008;8:1396–400.

    Article  CAS  PubMed  Google Scholar 

  21. Schneeberger S, Kreczy A, Brandacher G, et al. Steroid- and ATG-resistant rejection after double forearm transplantation responds to Campath-1H. Am J Transplant. 2004;4:1372–4.

    Article  PubMed  Google Scholar 

  22. Kanitakis J, Jullien D, Nicolas J, et al. Sequential histological and immunohistochemical study of the skin of the first human hand allograft. Transplantation. 2000;69:1380–5.

    Article  CAS  PubMed  Google Scholar 

  23. Schneeberger S, Gorantla V, van Riet R, et al. Atypical acute rejection after hand transplantation. Am J Transplant. 2008;8:688–96.

    Article  CAS  PubMed  Google Scholar 

  24. Kanitakis J, Jullien D, Petruzzo P, et al. Clinicopathologic features of graft rejection of the first human hand allograft. Transplantation. 2003;76:688–93.

    Article  PubMed  Google Scholar 

  25. Hautz T, Zelger B, Weissenbacher A, et al. Standardizing skin biopsy sampling to assess rejection in vascularized composite allotransplantation. Clin Transpl. 2013;27:81–90.

    Article  Google Scholar 

  26. Mundinger G, Munivenkatappa R, Drachenberg C, et al. Histopathology of chronic rejection in a nonhuman primate model of vascularized composite allotransplantation. Transplantation. 2013;95:1204–10.

    Article  CAS  PubMed  Google Scholar 

  27. Robert C, Kupper T. Inflammatory skin diseases, T cells and immune surveillance. N Engl J Med. 1999;24:1817–28.

    Google Scholar 

  28. Schön M, Boehncke W. Psoriasis. N Engl J Med. 2005;18:1899–912.

    Article  Google Scholar 

  29. Kaffenberger B, Wong H, Jarjour W, et al. Remission of psoriasis after allogeneic, but no not autologous, hematopoietic stem-cell transplantation. J Am Acad Dermatol. 2013;68:489–92.

    Article  PubMed  Google Scholar 

  30. Alon R, Feigelson S. From rolling to arrest on blood vessels: leukocyte tap dancing on endothelial integrin ligands and chemokines at sub-second contacts. Sem Immunol. 2002;14:93–104.

    Article  CAS  Google Scholar 

  31. Schön M. The molecular basis for lymphocyte recruitment to the skin: clues for pathogenesis and selective therapies of inflammatory disorders. J Inv Dermatol. 2003;121:951–62.

    Article  Google Scholar 

  32. Shamri R, Grabovsky V, Gauguet J, et al. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol. 2005;6:497–506.

    Article  CAS  PubMed  Google Scholar 

  33. Patrick A, Rullo J, Bveaudin S, et al. Hepatic leukocyte recruitment in response to time-limited expression of TNF-alpha and IL-1beta. Am J Physiol Gastrointest Liver Physiol. 2007;293:663–72.

    Article  Google Scholar 

  34. Li W, Nava R, Bribriesco A, et al. Intravital 2-photon imaging of leukocyte trafficking in beating heart. J Clin Invest. 2012;122:2499–508.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Fuhlbrigge R, Kiefer J, Armerding D, et al. Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature 1997;389:978–81.

    Article  CAS  PubMed  Google Scholar 

  36. Boyman O, Hefti C, Conrad B, et al. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J Exp Med. 2004;199:731–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Butcher E, Williams M, Youngman K, et al. Lymphocyte trafficking and regional immunity. Adv Immunol 1999;72:209–53.

    Article  CAS  PubMed  Google Scholar 

  38. Bhushan M, Bleiker T, Ballsdon A, et al. Anti-E-selectin is ineffective in the treatment of psoriasis: a randomized trial. Br J Dermatol. 2002;146:824–31.

    Article  CAS  PubMed  Google Scholar 

  39. Schön M, Krahn T, Schön M, et al. Efomycine M, a new specific inhibitor of selectin, impairs leukocyte adhesion and alleviates cutaneous inflammation. Nat Med. 2002;4:366–72.

    Article  Google Scholar 

  40. Boster A, Nicholas J, Topalli I, et al. Lessons learned from fatal progressive multifocal leukoencephalopathy in a patient with multiple sclerosis treated with natalizumab. JAMA Neurol. 2013;70:398–402.

    Article  PubMed  Google Scholar 

  41. Lebwohl M, Tyring S, Hamilton T, et al. A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N Engl J Med. 2003;349:2004–13.

    Article  CAS  PubMed  Google Scholar 

  42. Camirad G. New perspectives in transplantation through intravital microscopy imaging. Curr Op Org Transpl. 2013;18:6–12.

    Article  Google Scholar 

  43. Germain R, Robei E, Cahalan M. A decade of imaging cellular motility and interaction dynamics in the immune system. Science. 2012;336:1676–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Horner B, Ferguson KK, Randolph M, et al. In vivo observations of cell trafficking in allotransplanted vascularized skin flaps and conventional skin grafts. J Plast Reconstr Aesth Surg. 2010;63:711–9.

    Article  Google Scholar 

  45. Celli S, Albert M, Bousso P. Visualizing the innate and adaptive immune responses underlying allograft rejection by two-photon microscopy. Nat Med. 2011;17:744–49.

    Article  CAS  PubMed  Google Scholar 

  46. Garrod K, Liu F, Forrest L, et al. NK cell patrolling and elimination of donor-derived dendritic cells favor indicrect alloreactivity. J Immunol. 2010;71:418–21.

    Google Scholar 

  47. Min W, Gorczynski R, Huang X, et al. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. J Immunol. 2000;164:161–7.

    Article  CAS  PubMed  Google Scholar 

  48. Emmer P, van der Vlag J, Adema G, et al. Dendritic cells activated by lipopolysaccharide after dexamethasone treatment induce donor-specific allograft hyporesponsiveness. Transplantation. 2006;81:1451–9.

    Article  CAS  PubMed  Google Scholar 

  49. Taner T, Hackstein H, Wang Z, et al. Rapamycin-treated, alloantigen-pulsed host dendritic cells induce Ag-specific T cell regulation and prolong graft survival. Am J Transplant. 2005;5:228–36.

    Article  CAS  PubMed  Google Scholar 

  50. Bonham C, Peng L, Liang X, et al. Marked prolongation of cardiac allograft survival by dendritic cells genetically engineered with NF-kB oligodeoxyribonucleotide decoys and adenoviral vectors encoding CTLA-Ig. J Immunol. 2002;169:3382–91.

    Article  CAS  PubMed  Google Scholar 

  51. Wang Z, Divito S, Shufesky W, et al. Dendritic cell therapies in transplantation revisited: deletion of recipient DCs deters the effect of therapeutic DCs. Am J Transplant. 2010;12:1398–408.

    Article  Google Scholar 

  52. Schuler G, Steinman R. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med. 1985;161:526–46.

    Article  CAS  PubMed  Google Scholar 

  53. Romani N, Clausen B, Stoitzner P. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev. 2010;234:120–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Romani N, Koide S, Crowley M, et al. Presentation of exogenous protein antigens by dendritic cells to T cell clones: intact protein is presented best by immature, epidermal Langerhans cells. J Exp Med. 1989;169:1169–78.

    Article  CAS  PubMed  Google Scholar 

  55. Steinman R. Decisions about dendritic cells: past, present, and future. Ann Rev Immunol. 2012;30:1–22.

    Article  CAS  Google Scholar 

  56. Wang L, Bursch L, Kssenpfennig A, et al. Langerin expressing cells promote skin immune responses under defined conditions. J Immunol. 2008;180:4722–7.

    Article  CAS  PubMed  Google Scholar 

  57. Kanitakis J, Morelon E, Petruzzo P, et al. Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp Dermatol. 2011;20:145–6.

    Article  CAS  PubMed  Google Scholar 

  58. Romani N, Tripp C, Stoitzner P. Langerhans cells come in waves. Immunity. 2012;37:766–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Van der Aar A, Picavet D, Müller F, et al. Langerhans cells favor skin flora tolerance through limited presentation of bacterial antigens and induction of regulatory T cells. J Invest Dermatol. 2013;133:1240–9.

    Article  CAS  PubMed  Google Scholar 

  60. Coombes J, Siddiqui K, Arancibia-Carcamo C, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;204:1757–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Grahammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grahammer, J., Hautz, T., Pratschke, J., Schneeberger, S. (2015). Migration and Communication Patterns in Skin Rejection. In: Brandacher, G. (eds) The Science of Reconstructive Transplantation. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2071-6_11

Download citation

Publish with us

Policies and ethics