Skip to main content

Measuring the Magnetic-Field Strength of the Quiet Solar Corona Using “EIT Waves”

  • Chapter
Book cover Coronal Magnetometry
  • 453 Accesses

Abstract

Variations in the propagation of globally propagating disturbances (commonly called “EIT waves”) through the low solar corona offer a unique opportunity to probe the plasma parameters of the solar atmosphere. Here, high-cadence observations of two “EIT wave” events taken using the Atmospheric Imaging Assembly (AIA) instrument onboard the Solar Dynamics Observatory (SDO) are combined with spectroscopic measurements from the Extreme ultraviolet Imaging Spectrometer (EIS) onboard the Hinode spacecraft and used to examine the variability of the quiet coronal magnetic-field strength. The combination of pulse kinematics from SDO/AIA and plasma density from Hinode/EIS is used to show that the magnetic-field strength is in the range ≈ 2 – 6 G in the quiet corona. The magnetic-field estimates are then used to determine the height of the pulse, allowing a direct comparison with theoretical values obtained from magnetic-field measurements from the Helioseismic and Magnetic Imager (HMI) onboard SDO using global-scale PFSS and local-scale extrapolations. While local-scale extrapolations predict heights inconsistent with prior measurements, the agreement between observations and the PFSS model indicates that “EIT waves” are a global phenomenon influenced by global-scale magnetic field.

Coronal Magnetometry

Guest Editors: S. Tomczyk, J. Zhang, and T.S. Bastian

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9(1), 131 – 149. ADS:1969SoPh....9..131A, doi:10.1007/BF00145734.

    Article  ADS  Google Scholar 

  • Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L., Démoulin, P., Wülser, J.P.: 2007, Coronal “wave”: a signature of the mechanism making CMEs large-scale in the low corona? Astron. Nachr. 328(8), 760. doi:10.1002/asna.200710794.

    Article  ADS  Google Scholar 

  • Ballai, I., Erdélyi, R.: 2003, In: Forgács-Dajka, E., Petrovay, K., Erdélyi, R. (eds.) Challenges in Coronal Moreton Waves, Contributions to NATO Advanced Research Workshop Turbulence 13, Pub. Astron. Depart. Eötvös University, 121 – 126.

    Google Scholar 

  • Ballai, I., Erdélyi, R.: 2004, Damping of coronal EIT waves as a tool for plasma diagnostics. In: Lacoste, H. (ed.) Proc. SOHO 13 Waves, Oscillations and Small-Scale Transients Events in the Solar Atmosphere: A Joint View from SOHO and TRACE SP-547, ESA, Noordwijk, 433.

    Google Scholar 

  • Chen, P.F., Fang, C., Shibata, K.: 2005, A full view of EIT waves. Astrophys. J. 622(2), 1202 – 1210. doi:10.1086/428084.

    Article  ADS  Google Scholar 

  • Chen, P.F., Wu, Y.: 2011, First evidence of coexisting EIT wave and coronal Moreton wave from SDO/AIA observations. Astrophys. J. Lett. 732(2), L20. doi:10.1088/2041-8205/732/2/L20.

    Article  ADS  Google Scholar 

  • Chen, P.F., Wu, S.T., Shibata, K., Fang, C.: 2002, Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Lett. 572(1), L99 – L102. doi:10.1086/341486.

    Article  ADS  Google Scholar 

  • Chen, F., Ding, M.D., Chen, P.F., Harra, L.K.: 2011, Spectroscopic analysis of interaction between an Extreme-ultraviolet Imaging Telescope wave and a coronal upflow region. Astrophys. J. 740(2), 116. doi:10.1088/0004-637X/740/2/116.

    Article  ADS  Google Scholar 

  • Cohen, O., Attrill, G.D.R., Manchester, W.B.I., Wills-Davey, M.J.: 2009, Numerical simulation of an EUV coronal wave based on the 2009 February 13 CME event observed by STEREO. Astrophys. J. 705(1), 587 – 602. doi:10.1088/0004-637X/705/1/587.

    Article  ADS  Google Scholar 

  • Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, Ø.: 2007, The EUV imaging spectrometer for Hinode. Solar Phys. 243(1), 19 – 61. ADS:2007SoPh..243...19C, doi:10.1007/s01007-007-0293-1.

    Article  ADS  Google Scholar 

  • Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162(1), 291 – 312. ADS:1995SoPh..162..291D, doi:10.1007/BF00733432.

    Article  ADS  Google Scholar 

  • Delannée, C., Török, T., Aulanier, G., Hochedez, J.F.: 2008, A new model for propagating parts of EIT waves: a current shell in a CME. Solar Phys. 247(1), 123 – 150. ADS:2008SoPh..247..123D, doi:10.1007/s11207-007-9085-4.

    Article  ADS  Google Scholar 

  • Dere, K.P., Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Kreplin, R.W., Michels, D.J., Moses, J.D., Moulton, N.E., Socker, D.G., St Cyr, O.C., Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Chauvineau, J.P., Marioge, J.P., Defise, J.M., Jamar, C., Rochus, P., Catura, R.C., Lemen, J.R., Gurman, J.B., Neupert, W., Clette, F., Cugnon, P., van Dessel, E.L., Lamy, P.L., Llebaria, A., Schwenn, R., Simnett, G.M.: 1997, EIT and LASCO observations of the initiation of a coronal mass ejection. Solar Phys. 175(2), 601 – 612. ADS:1997SoPh..175..601D, doi:10.1023/A:1004907307376.

    Article  ADS  Google Scholar 

  • Downs, C., Roussev, I.I., van der Holst, B., Lugaz, N., Sokolov, I.V., Gombosi, T.I.: 2011, Studying extreme ultraviolet wave transients with a digital laboratory: direct comparison of extreme ultraviolet wave observations to global magnetohydrodynamic simulations. Astrophys. J. 728(1), 2. doi:10.1088/0004-637X/728/1/2.

    Article  ADS  Google Scholar 

  • Downs, C., Roussev, I.I., van der Holst, B., Lugaz, N., Sokolov, I.V.: 2012, Understanding SDO/AIA observations of the 2010 June 13 EUV wave event: direct insight from a global thermodynamic MHD simulation. Astrophys. J. 750(2), 134. doi:10.1088/0004-637X/750/2/134.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Temmer, M., Davila, J., Thompson, W.T., Jones, S., McAteer, R.T.J., Wuelser, J.P., Freeland, S., Howard, R.A.: 2009, EUV wave reflection from a coronal hole. Astrophys. J. Lett. 691(2), L123 – L127. doi:10.1088/0004-637X/691/2/L123.

    Article  ADS  Google Scholar 

  • Harra, L.K., Sterling, A.C., Gömöry, P., Veronig, A.: 2011, Spectroscopic observations of a coronal Moreton wave. Astrophys. J. Lett. 737(1), L4. doi:10.1088/2041-8205/737/1/L4.

    Article  ADS  Google Scholar 

  • Kienreich, I.W., Temmer, M., Veronig, A.M.: 2009, STEREO quadrature observations of the three-dimensional structure and driver of a global coronal wave. Astrophys. J. Lett. 703(2), L118 – L122. doi:10.1088/0004-637X/703/2/L118.

    Article  ADS  Google Scholar 

  • Kienreich, I.W., Muhr, N., Veronig, A.M., Berghmans, D., De Groof, A., Temmer, M., Vršnak, B., Seaton, D.B.: 2012, Solar TErrestrial Relations Observatory-A (STEREO-A) and PRoject for On-Board Autonomy 2 (PROBA2) quadrature observations of reflections of three EUV waves from a coronal hole. Solar Phys. 286(1), 201 – 291. doi:10.1007/s11207-012-0023-8.

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: an overview. Solar Phys. 243(1), 3 – 17. ADS:2007SoPh..243....3K, doi:10.1007/s11207-007-9014-6.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275(1), 17 – 40. ADS:2012SoPh..275...17L, doi:10.1007/s11207-011-9776-8.

    Article  ADS  Google Scholar 

  • Lin, H., Kuhn, J.R., Coulter, R.: 2004, Coronal magnetic field measurements. Astrophys. J. Lett. 613(2), L177 – L180. doi:10.1086/425217.

    Article  ADS  Google Scholar 

  • Lin, H., Penn, M.J., Tomczyk, S.: 2000, A new precise measurement of the coronal magnetic field strength. Astrophys. J. Lett. 541(2), L83 – L86. doi:10.1086/312900.

    Article  ADS  Google Scholar 

  • Liu, W., Nitta, N.V., Schrijver, C.J., Title, A.M., Tarbell, T.D.: 2010, First SDO AIA observations of a global coronal EUV “wave”: multiple components and “ripples”. Astrophys. J. Lett. 723(1), L53 – L59. doi:10.1088/2041-8205/723/1/L53.

    Article  ADS  Google Scholar 

  • Long, D.M., Deluca, E.E., Gallagher, P.T.: 2011, The wave properties of coronal bright fronts observed using SDO/AIA. Astrophys. J. Lett. 741(1), L21. doi:10.1088/2041-8205/741/1/L21.

    Article  ADS  Google Scholar 

  • Long, D.M., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2008, The kinematics of a globally propagating disturbance in the solar corona. Astrophys. J. Lett. 680(1), L81 – L84. doi:10.1086/589742.

    Article  ADS  Google Scholar 

  • Long, D.M., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2011, Deceleration and dispersion of large-scale coronal bright fronts. Astron. Astrophys. 531, 42. doi:10.1051/0004-6361/201015879.

    Article  ADS  Google Scholar 

  • Mazzotta, P., Mazzitelli, G., Colafrancesco, S., Vittorio, N.: 1998, Ionization balance for optically thin plasmas: rate coefficients for all atoms and ions of the elements H to NI. Astron. Astrophys. Suppl. 133, 403 – 409. doi:10.1051/aas:1998330.

    Article  ADS  Google Scholar 

  • Moses, D., Clette, F., Delaboudinière, J.P., Artzner, G.E., Bougnet, M., Brunaud, J., Carabetian, C., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Newmark, J., Thompson, B., Maucherat, A., Portier-Fozzani, F., Berghmans, D., Cugnon, P., van Dessel, E.L., Gabryl, J.R.: 1997, EIT observations of the extreme ultraviolet Sun. Solar Phys. 175(2), 571 – 599. ADS:1997SoPh..175..571M, doi:10.1023/A:1004902913117.

    Article  ADS  Google Scholar 

  • Muhr, N., Veronig, A.M., Kienreich, I.W., Temmer, M., Vršnak, B.: 2011, Analysis of characteristic parameters of large-scale coronal waves observed by the Solar-Terrestrial Relations Observatory/Extreme Ultraviolet Imager. Astrophys. J. 739(2), 89. doi:10.1088/0004-637X/739/2/89.

    Article  ADS  Google Scholar 

  • Murawski, K., Nakariakov, V.M., Pelinovsky, E.N.: 2001, Fast magnetoacoustic waves in a randomly structured solar corona. Astron. Astrophys. 366, 306 – 310. doi:10.1051/0004-6361:20000027.

    Article  ADS  MATH  Google Scholar 

  • Olmedo, O., Vourlidas, A., Zhang, J., Cheng, X.: 2012, Secondary waves and/or the “reflection” from and “transmission” through a coronal hole of an extreme ultraviolet wave associated with the 2011 February 15 X2.2 flare observed with SDO/AIA and STEREO/EUVI. Astrophys. J. 756(2), 143. doi:10.1088/0004-637X/756/2/143.

    Article  ADS  Google Scholar 

  • Patsourakos, S., Vourlidas, A.: 2009, “Extreme ultraviolet waves” are waves: first quadrature observations of an extreme ultraviolet wave from STEREO. Astrophys. J. Lett. 700(2), L182 – L186. doi:10.1088/0004-637X/700/2/L182.

    Article  ADS  Google Scholar 

  • Patsourakos, S., Vourlidas, A., Wang, Y.M., Stenborg, G., Thernisien, A.: 2009, What is the nature of EUV waves? First STEREO 3D observations and comparison with theoretical models. Solar Phys. 259(1), 49 – 71. ADS:2009SoPh..259...49P, doi:10.1007/s11207-009-9386-x.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275(1), 3 – 15. ADS:2012SoPh..275....3P, doi:10.1007/s11207-011-9841-3.

    Article  ADS  Google Scholar 

  • Priest, E.R.: 1987, Solar Magneto-Hydrodynamics, Reidel, Dordrecht.

    Google Scholar 

  • Raouafi, N.E., Sahal-Bréchot, S., Lemaire, P.: 2002, Linear polarization of the O VI lambda 1031.92 coronal line. II. Constraints on the magnetic field and the solar wind velocity field vectors in the coronal polar holes. Astron. Astrophys. 396, 1019 – 1028. doi:10.1051/0004-6361:20021418.

    Article  ADS  Google Scholar 

  • Régnier, S., Priest, E.R., Hood, A.W.: 2008, Coronal Alfvén speeds in an isothermal atmosphere. I. Global properties. Astron. Astrophys. 491(1), 297 – 309. doi:10.1051/0004-6361:200810362.

    Article  ADS  MATH  Google Scholar 

  • Roberts, B., Edwin, P.M., Benz, A.O.: 1984, On coronal oscillations. Astrophys. J. 279, 857 – 865. doi:10.1086/161956.

    Article  ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6(3), 442 – 455. ADS:1969SoPh....6..442S, doi:10.1007/BF00146478.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275(1), 207 – 227. ADS:2012SoPh..275..207S, doi:10.1007/s11207-011-9834-2.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212(1), 165 – 200. ADS:2003SoPh..212..165S, doi:10.1023/A:1022908504100.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Aulanier, G., Title, A.M., Pariat, E., Delannée, C.: 2011, The 2011 February 15 X2 flare, ribbons, coronal front, and mass ejection: interpreting the three-dimensional views from the Solar Dynamics Observatory and STEREO guided by magnetohydrodynamic flux-rope modeling. Astrophys. J. 738(2), 167. doi:10.1088/0004-637X/738/2/167.

    Article  ADS  Google Scholar 

  • Thompson, B.J., Myers, D.C.: 2009, A catalog of coronal “EIT wave” transients. Astrophys. J. Suppl. 183(2), 225 – 243. doi:10.1088/0067-0049/183/2/225.

    Article  ADS  Google Scholar 

  • Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25(1), 2465 – 2468. doi:10.1029/98GL50429.

    Article  ADS  Google Scholar 

  • Thompson, B.J., Gurman, J.B., Neupert, W.M., Newmark, J.S., Delaboudinière, J.P., St Cyr, O.C., Stezelberger, S., Dere, K.P., Howard, R.A., Michels, D.J.: 1999, SOHO/EIT observations of the 1997 April 7 coronal transient: possible evidence of coronal Moreton waves. Astrophys. J. Lett. 517(2), L151 – L154. doi:10.1086/312030.

    Article  ADS  Google Scholar 

  • Uchida, Y.: 1970, Diagnosis of coronal magnetic structure by flare-associated hydromagnetic disturbances. Publ. Astron. Soc. Japan 22, 341.

    ADS  Google Scholar 

  • Veronig, A.M., Muhr, N., Kienreich, I.W., Temmer, M., Vršnak, B.: 2010, First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys. J. Lett. 716(1), L57 – L62. doi:10.1088/2041-8205/716/1/L57.

    Article  ADS  Google Scholar 

  • Veronig, A.M., Gömöry, P., Kienreich, I.W., Muhr, N., Vršnak, B., Temmer, M., Warren, H.P.: 2011, Plasma diagnostics of an EIT wave observed by Hinode/EIS and SDO/AIA. Astrophys. J. Lett. 743, L10. doi:10.1088/2041-8205/743/1/L10.

    Article  ADS  Google Scholar 

  • Wang, Y.M.: 2000, EIT waves and fast-mode propagation in the solar corona. Astrophys. J. Lett. 543(1), L89 – L93. doi:10.1086/318178.

    Article  ADS  Google Scholar 

  • Warmuth, A., Mann, G.: 2011, Kinematical evidence for physically different classes of large-scale coronal EUV waves. Astron. Astrophys. 532, 151. doi:10.1051/0004-6361/201116685.

    Article  ADS  Google Scholar 

  • Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W.: 2004, A multiwavelength study of solar flare waves. I. Observations and basic properties. Astron. Astrophys. 418, 1101 – 1115. doi:10.1051/0004-6361:20034332.

    Article  ADS  Google Scholar 

  • West, M.J., Zhukov, A.N., Dolla, L., Rodriguez, L.: 2011, Coronal seismology using EIT waves: estimation of the coronal magnetic field strength in the quiet Sun. Astrophys. J. 730(2), 122. doi:10.1088/0004-637X/730/2/122.

    Article  ADS  Google Scholar 

  • White, S.M., Kundu, M.R.: 1997, Radio observations of gyroresonance emission from coronal magnetic fields. Solar Phys. 174(1), 31 – 52. ADS:1997SoPh..174...31W, doi:10.1023/A:1004975528106.

    Article  ADS  Google Scholar 

  • Wills-Davey, M.J., Thompson, B.J.: 1999, Observations of a propagating disturbance in TRACE. Solar Phys. 190(1), 467 – 483. ADS:1999SoPh..190..467W, doi:10.1023/A:1005201500675.

    Article  ADS  Google Scholar 

  • Young, P.R., Del Zanna, G., Mason, H.E., Dere, K.P., Landi, E., Landini, M., Doschek, G.A., Brown, C.M., Culhane, L., Harra, L.K., Watanabe, T., Hara, H.: 2007, EUV emission lines and diagnostics observed with Hinode/EIS. Publ. Astron. Soc. Japan 59, 857.

    ADS  Google Scholar 

  • Zheng, R., Jiang, Y., Yang, J., Bi, Y., Hong, J., Yang, B., Yang, D.: 2012, Homologous extreme ultraviolet waves in the emerging flux region observed by the Solar Dynamics Observatory. Astrophys. J. 747(1), 67. doi:10.1088/0004-637X/747/1/67.

    Article  ADS  Google Scholar 

  • Zhukov, A.N., Auchère, F.: 2004, On the nature of EIT waves, EUV dimmings and their link to CMEs. Astron. Astrophys. 427, 705 – 716. doi:10.1051/0004-6361:20040351.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Long .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Long, D.M., Williams, D.R., Régnier, S., Harra, L.K. (2013). Measuring the Magnetic-Field Strength of the Quiet Solar Corona Using “EIT Waves”. In: Tomczyk, S., Zhang, J., Bastian, T. (eds) Coronal Magnetometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2038-9_7

Download citation

Publish with us

Policies and ethics