Polarimetric Properties of Flux Ropes and Sheared Arcades in Coronal Prominence Cavities

  • L. A. Rachmeler
  • S. E. Gibson
  • J. B. Dove
  • C. R. DeVore
  • Y. Fan


The coronal magnetic field is the primary driver of solar dynamic events. Linear and circular polarization signals of certain infrared coronal emission lines contain information about the magnetic field, and to access this information either a forward or an inversion method must be used. We study three coronal magnetic configurations that are applicable to polar-crown filament cavities by doing forward calculations to produce synthetic polarization data. We analyze these forward data to determine the distinguishing characteristics of each model. We conclude that it is possible to distinguish between cylindrical flux ropes, spheromak flux ropes, and sheared arcades using coronal polarization measurements. If one of these models is found to be consistent with observational measurements, it will mean positive identification of the magnetic morphology that surrounds certain quiescent filaments, which will lead to a better understanding of how they form and why they erupt.


Corona, quiet Magnetic fields, corona Polarization Prominences, models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antiochos, S.K., Dahlburg, R.B., Klimchuk, J.A.: 1994, The magnetic field of solar prominences. Astrophys. J. Lett. 420, L41 – L44. doi: 10.1086/187158. ADSCrossRefGoogle Scholar
  2. Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485 – 493. doi: 10.1086/306563. ADSCrossRefGoogle Scholar
  3. Arnaud, J., Newkirk, G. Jr.: 1987, Mean properties of the polarization of the Fe XIII 10747 Å coronal emission line. Astron. Astrophys. 178, 263 – 268. ADSGoogle Scholar
  4. Aschwanden, M.J., Newmark, J.S., Delaboudinière, J.-P., Neupert, W.M., Klimchuk, J.A., Gary, G.A., Portier-Fozzani, F., Zucker, A.: 1999, Three-dimensional stereoscopic analysis of solar active region loops. I. SOHO/EIT observations at temperatures of (1.0–1.5)×106 K. Astrophys. J. 515, 842 – 867. doi: 10.1086/307036. ADSCrossRefGoogle Scholar
  5. Baķ-Stȩślicka, U., Gibson, S.E., Fan, Y.E., Bethge, C.W., Forland, B., Rachmeler, L.A.: 2013, The magnetic structure of solar prominence cavities: new observable. Astrophys. J. Lett. 770, L28. doi: 10.1088/2041-8205/770/2/L28. ADSCrossRefGoogle Scholar
  6. Bastian, T.S.: 2005, The frequency agile solar radiotelescope. In: Gary, D.E., Keller, C.U. (eds.) Solar and Space Weather Radiophysics, Astrophys Space Sci. Lib. 314, 47 – 69. doi: 10.1007/1-4020-2814-8_3. Google Scholar
  7. Casini, R.: 2002, The Hanle effect of the two-level atom in the weak-field approximation. Astrophys. J. 568, 1056 – 1065. doi: 10.1086/338986. ADSCrossRefGoogle Scholar
  8. Casini, R., Judge, P.G.: 1999, Spectral lines for polarization measurements of the coronal magnetic field. II. Consistent treatment of the Stokes vector for magnetic-dipole transitions. Astrophys. J. 522, 524 – 539. doi: 10.1086/307629. ADSCrossRefGoogle Scholar
  9. Charvin, P.: 1965, Étude de la polarisation des raies interdites de la couronne solaire. Application au cas de la raie verte λ 5303. Ann. Astrophys. 28, 877. ADSGoogle Scholar
  10. Dove, J.B., Gibson, S.E., Rachmeler, L.A., Tomczyk, S., Judge, P.: 2011, A ring of polarized light: evidence for twisted coronal magnetism in cavities. Astrophys. J. Lett. 731, L1. doi: 10.1088/2041-8205/731/1/L1. ADSCrossRefGoogle Scholar
  11. Fan, Y., Gibson, S.E.: 2006, On the nature of the X-ray bright core in a stable filament channel. Astrophys. J. Lett. 641, L149 – L152. doi: 10.1086/504107. ADSCrossRefGoogle Scholar
  12. Fuller, J., Gibson, S.E.: 2009, A survey of coronal cavity density profiles. Astrophys. J. 700, 1205 – 1215. doi: 10.1088/0004-637X/700/2/1205. ADSCrossRefGoogle Scholar
  13. Gelfreikh, G.B.: 1994, Radio measurements of coronal magnetic fields. In: Rusin, V., Heinzel, P., Vial, J.-C. (eds.) Solar Coronal Structures, IAU Coll. 144, VEDA Slovak Acad. Sciences, 21 – 28. Google Scholar
  14. Gibson, S.E., Fludra, A., Bagenal, F., Biesecker, D., del Zanna, G., Bromage, B.: 1999, Solar minimum streamer densities and temperatures using whole sun month coordinated data sets. J. Geophys. Res. 104, 9691 – 9700. doi: 10.1029/98JA02681. ADSCrossRefGoogle Scholar
  15. Gibson, S.E., Foster, D., Burkepile, J., de Toma, G., Stanger, A.: 2006, The calm before the storm: the link between quiescent cavities and coronal mass ejections. Astrophys. J. 641, 590 – 605. doi: 10.1086/500446. ADSCrossRefGoogle Scholar
  16. Gibson, S.E., Kucera, T.A., Rastawicki, D., Dove, J., de Toma, G., Hao, J., Hill, S., Hudson, H.S., Marqué, C., McIntosh, P.S., Rachmeler, L., Reeves, K.K., Schmieder, B., Schmit, D.J., Seaton, D.B., Sterling, A.C., Tripathi, D., Williams, D.R., Zhang, M.: 2010, Three-dimensional morphology of a coronal prominence cavity. Astrophys. J. 724, 1133 – 1146. doi: 10.1088/0004-637X/724/2/1133. ADSCrossRefGoogle Scholar
  17. Gibson, S.E., Low, B.C.: 1998, A time-dependent three-dimensional magnetohydrodynamic model of the coronal mass ejection. Astrophys. J. 493, 460. doi: 10.1086/305107. ADSCrossRefGoogle Scholar
  18. Gibson, S.E., Low, B.C.: 2000, Three-dimensional and twisted: an MHD interpretation of on-disk observational characteristics of coronal mass ejections. J. Geophys. Res. 105, 18187 – 18202. doi: 10.1029/1999JA000317. ADSCrossRefGoogle Scholar
  19. Grebinskij, A., Bogod, V., Gelfreikh, G., Urpo, S., Pohjolainen, S., Shibasaki, K.: 2000, Microwave tomography of solar magnetic fields. Astron. Astrophys. Suppl. 144, 169 – 180. doi: 10.1051/aas:2000202. ADSCrossRefGoogle Scholar
  20. Harvey, J.W.: 1969, Magnetic fields associated with solar active-region prominences. PhD thesis, University of Colorado at Boulder. Google Scholar
  21. Heinzel, P., Schmieder, B., Fárník, F., Schwartz, P., Labrosse, N., Kotrč, P., Anzer, U., Molodij, G., Berlicki, A., DeLuca, E.E., Golub, L., Watanabe, T., Berger, T.: 2008, Hinode, TRACE, SOHO, and ground-based observations of a quiescent prominence. Astrophys. J. 686, 1383 – 1396. doi: 10.1086/591018. ADSCrossRefGoogle Scholar
  22. House, L.L.: 1977, Coronal emission-line polarization from the statistical equilibrium of magnetic sublevels. I – Fe XIII. Astrophys. J. 214, 632 – 652. doi: 10.1086/155289. ADSCrossRefGoogle Scholar
  23. Hudson, H.S., Acton, L.W., Harvey, K.L., McKenzie, D.E.: 1999, A stable filament cavity with a hot core. Astrophys. J. Lett. 513, L83 – L86. doi: 10.1086/311892. ADSCrossRefGoogle Scholar
  24. Jensen, E.A.: 2007, High frequency Faraday rotation observations of the solar corona. PhD thesis, University of California, Los Angeles. Google Scholar
  25. Judge, P.G.: 2007, Spectral lines for polarization measurements of the coronal magnetic field. V. Information content of magnetic dipole lines. Astrophys. J. 662, 677 – 690. doi: 10.1086/515433. ADSCrossRefGoogle Scholar
  26. Judge, P.G., Casini, R.: 2001, A synthesis code for forbidden coronal lines. In: Sigwarth, M. (ed.) Advanced Solar Polarimetry – Theory, Observation, and Instrumentation CS-236, Astron. Soc. Pacific, 503. Google Scholar
  27. Judge, P.G., Low, B.C., Casini, R.: 2006, Spectral lines for polarization measurements of the coronal magnetic field. IV. Stokes signals in current-carrying fields. Astrophys. J. 651, 1229 – 1237. doi: 10.1086/507982. ADSCrossRefGoogle Scholar
  28. Karpen, J.T., Antiochos, S.K., DeVore, C.R.: 2012, The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys. J. 760, 81. doi: 10.1088/0004-637X/760/1/81. ADSCrossRefGoogle Scholar
  29. Karpen, J.T., Antiochos, S.K., Hohensee, M., Klimchuk, J.A., MacNeice, P.J.: 2001, Are magnetic dips necessary for prominence formation? Astrophys. J. Lett. 553, L85 – L88. doi: 10.1086/320497. ADSCrossRefGoogle Scholar
  30. Kramar, M., Inhester, B.: 2007, Inversion of coronal Zeeman and Hanle observations to reconstruct the coronal magnetic field. Mem. Soc. Astron. Ital. 78, 120. ADSGoogle Scholar
  31. Kramar, M., Inhester, B., Solanki, S.K.: 2006, Vector tomography for the coronal magnetic field. I. Longitudinal Zeeman effect measurements. Astron. Astrophys. 456, 665 – 673. doi: 10.1051/0004-6361:20064865. ADSCrossRefGoogle Scholar
  32. Lin, H., Kuhn, J.R., Coulter, R.: 2004, Coronal magnetic field measurements. Astrophys. J. Lett. 613, L177 – L180. doi: 10.1086/425217. ADSCrossRefGoogle Scholar
  33. Lin, H., Penn, M.J., Tomczyk, S.: 2000, A new precise measurement of the coronal magnetic field strength. Astrophys. J. Lett. 541, L83 – L86. doi: 10.1086/312900. ADSCrossRefGoogle Scholar
  34. Liu, Y., Lin, H.: 2008, Observational test of coronal magnetic field models. I. Comparison with potential field model. Astrophys. J. 680, 1496 – 1507. doi: 10.1086/588645. ADSCrossRefGoogle Scholar
  35. Low, B.C., Hundhausen, J.R.: 1995, Magnetostatic structures of the solar corona. 2: The magnetic topology of quiescent prominences. Astrophys. J. 443, 818 – 836. doi: 10.1086/175572. ADSCrossRefGoogle Scholar
  36. Luna, M., Karpen, J.T., DeVore, C.R.: 2012, Formation and evolution of a multi-threaded solar prominence. Astrophys. J. 746, 30. doi: 10.1088/0004-637X/746/1/30. ADSCrossRefGoogle Scholar
  37. Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II – Magnetic structure and dynamics. Space Sci. Rev. 151, 333 – 399. doi: 10.1007/s11214-010-9628-0. ADSCrossRefGoogle Scholar
  38. Maričić, D., Vršnak, B., Stanger, A.L., Veronig, A.: 2004, Coronal mass ejection of 15 May 2001: I. Evolution of morphological features of the eruption. Solar Phys. 225, 337 – 353. doi: 10.1007/s11207-004-3748-1. ADSCrossRefGoogle Scholar
  39. Patzold, M., Bird, M.K., Volland, H., Levy, G.S., Seidel, B.L., Stelzried, C.T.: 1987, The mean coronal magnetic field determined from HELIOS Faraday rotation measurements. Solar Phys. 109, 91 – 105. doi: 10.1007/BF00167401. ADSCrossRefGoogle Scholar
  40. Querfeld, C.W.: 1977, A near-infrared coronal emission-line polarimeter. In: Azzam, R.M.A., Coffeen, D.L. (eds.) Optical Polarimetry: Instrumentation and Applications, Proc. SPIE 112, 200 – 208. CrossRefGoogle Scholar
  41. Rachmeler, L.A., Casini, R., Gibson, S.E.: 2012, Interpreting coronal polarization observations. In: Rimmele, T.R., Tritschler, A., Wöger, F., Collados Vera, M., Socas-Navarro, H., Schlichenmaier, R., Carlsson, M., Berger, T., Cadavid, A., Gilbert, P.R., Goode, P.R., Knölker, M. (eds.) Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona. CS-463, Astron. Soc. Pac., 227. Google Scholar
  42. Reeves, K.K., Gibson, S.E., Kucera, T.A., Hudson, H.S., Kano, R.: 2012, Thermal properties of a solar coronal cavity observed with the X-ray telescope on Hinode. Astrophys. J. 746, 146. doi: 10.1088/0004-637X/746/2/146. ADSCrossRefGoogle Scholar
  43. Régnier, S., Walsh, R.W., Alexander, C.E.: 2011, A new look at a polar crown cavity as observed by SDO/AIA. Structure and dynamics. Astron. Astrophys. 533, L1. doi: 10.1051/0004-6361/201117381. ADSCrossRefGoogle Scholar
  44. Schmit, D.J., Gibson, S.E.: 2011, Forward modeling cavity density: a multi-instrument diagnostic. Astrophys. J. 733, 1. doi: 10.1088/0004-637X/733/1/1. ADSCrossRefGoogle Scholar
  45. Tomczyk, S., Card, G.L., Darnell, T., Elmore, D.F., Lull, R., Nelson, P.G., Streander, K.V., Burkepile, J., Casini, R., Judge, P.G.: 2008, An instrument to measure coronal emission line polarization. Solar Phys. 247, 411 – 428. doi: 10.1007/s11207-007-9103-6. ADSCrossRefGoogle Scholar
  46. Trujillo Bueno, J.: 2001, Atomic polarization and the Hanle effect. In: Sigwarth, M. (ed.) Advanced Solar Polarimetry – Theory, Observation, and Instrumentation CS-236, Astron. Soc. Pac., 161. Google Scholar
  47. van Vleck, J.H.: 1925, On the quantum theory of the polarization of resonance radiation in magnetic fields. Proc. Natl. Acad. Sci. USA 11, 612 – 618. doi: 10.1073/pnas.11.10.612. ADSCrossRefMATHGoogle Scholar
  48. White, S.M., Kundu, M.R.: 1997, Radio observations of gyroresonance emission from coronal magnetic fields. Solar Phys. 174, 31 – 52. doi: 10.1023/A:1004975528106. ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • L. A. Rachmeler
    • 1
    • 2
  • S. E. Gibson
    • 3
  • J. B. Dove
    • 4
  • C. R. DeVore
    • 5
  • Y. Fan
    • 3
  1. 1.School of Mathematics and StatisticsUniversity of St. AndrewsNorth Haugh, St. AndrewsUK
  2. 2.Royal Observatory of BelgiumBrusselsBelgium
  3. 3.High Altitude ObservatoryNCARBoulderUSA
  4. 4.Physics DepartmentMetropolitan State University of DenverDenverUSA
  5. 5.Laboratory for Computational Physics and Fluid DynamicsNaval Research LaboratoryWashingtonUSA

Personalised recommendations