Anti-HER2/neu Therapy in DCIS

  • Amelia Tower
  • Ruta D. Rao
  • Kalliopi P. Siziopikou
  • Melody A. Cobleigh
  • Thomas B. Julian
Chapter

Abstract

Ductal carcinoma in situ (DCIS) is a heterogeneous form of preinvasive breast cancer, with subtypes that are comparable to those of invasive disease. Targeted molecular therapies have improved outcomes for patients with invasive breast cancer, and we have parallel opportunities for advances in personalized treatment of DCIS. Early work has demonstrated synergy between human epidermal growth factor receptor (HER)2-targeted therapy and radiotherapy. Anti-HER2 therapy may also induce an immune response. This chapter addresses the history of research regarding HER2 expression in DCIS as well as ongoing clinical trials that address whether HER2-targeted therapy will improve patient outcomes in DCIS.

Keywords

Ductal carcinoma in situ HER2/neu Trastuzumab Radiotherapy 

References

  1. 1.
    Davidson NE. Fifteen years of anti-HER2 therapy. Oncology (Williston Park). 2013;27(3):151.Google Scholar
  2. 2.
    Ross JS. Saving lives with accurate HER2 testing. Am J Clin Pathol. 2010;134(2):183–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.PubMedCrossRefGoogle Scholar
  4. 4.
    Allred DC, Clark GM, Tandon AK, et al. HER2 in node-negative breast cancer: prognostic significance of overexpression influenced by the presence of in situ carcinoma. J Clin Oncol. 1992;10(4):566–605.Google Scholar
  5. 5.
    Allred DC, Clark GM, Molina R, et al. Overexpression of HER2 and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum Pathol. 1992;23(9):974–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Eccles SA. The role of c-erbB-2/HER2/neu in breast cancer progression and metastasis. J Mammary Gland Biol Neoplasia. 2001;6(4):393–406.PubMedCrossRefGoogle Scholar
  7. 7.
    NSABP B-43 protocol. ClinicalTrials identifier: NCT00769379. https://clinicaltrials.gov/ct2/show/NCT00769379?term=NSABP+B-43&rank=1. Accessed on 23 Sept 2014.
  8. 8.
    Kuerer HM, Buzdar AU, Mittendorf EA, et al. Biologic and immunologic effects of preoperative trastuzumab for ductal carcinoma in situ of the breast. Cancer. 2011;117(1):39–47.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Lester SC, Bose S, Chen Y, et al. Protocol for the examination of specimens from patients with ductal carcinoma in situ of the breast. Arch Pathol Lab Med. 2009;133(1):15–25.PubMedGoogle Scholar
  10. 10.
    Fitzgibbons PL, Henson DE, Hutter RV. Benign breast changes and the risk for subsequent breast cancer: an update of the 1985 consensus statement. Cancer Committee of the College of American Pathologists. Arch Pathol Lab Med. 1998;122(12):1053–5.PubMedGoogle Scholar
  11. 11.
    Siziopikou KP. Ductal carcinoma in situ of the breast: current concepts and future directions. Arch Pathol Lab Med. 2013;137(4):462–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Consensus conference on the classification of ductal carcinoma in situ. The Consensus Conference Committee. Cancer. 1997;80(9):1798–802.Google Scholar
  13. 13.
    Bur ME, Zimarowski MJ, Schnitt SJ, et al. Estrogen receptor immunohistochemistry in carcinoma in situ of the breast. Cancer. 1992;69(5):1174–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Bobrow LG, Happerfield LC, Bult P, et al. The classification of ductal carcinoma in situ and its association with biological markers. Semin Diagn Pathol. 1994;11(3):199–207.PubMedGoogle Scholar
  15. 15.
    Bose S, Lesser ML, Norton L, et al. Immunophenotype of intraductal carcinoma. Arch Pathol Lab Med. 1996;120(1):81–5.PubMedGoogle Scholar
  16. 16.
    Rudas M, Neumayer R, Gnant MF, et al. p53 protein expression, cell proliferation and steroid hormone receptors in ductal and lobular in situ carcinomas of the breast. Eur J Cancer. 1997;33(1):39–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Mack L, Doig G, O’Malley FP. Relationship of a new histological categorization of ductal carcinoma in situ of the breast with size and the immunohistochemical expression of p53, c-erbB-2, bcl-2 and ki-67. Hum Pathol. 1997;28(8):974–9.PubMedCrossRefGoogle Scholar
  18. 18.
    van de Vijver MJ, Peterse, Mooi WJ, et al. Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med. 1988;319(19):1239–45.PubMedCrossRefGoogle Scholar
  19. 19.
    Bartkova J, Barnes DM, Millis RR, et al. Immunohistochemical demonstration of c-erbB-2 protein in mammary ductal carcinoma in situ. Hum Pathol. 1990;21(11):1164–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Poller DN, Roberts EC, Bell JA, et al. p53 protein expression in mammary ductal carcinoma in situ: relationship to immunohistochemical expression of estrogen receptor and c-erbB-2 protein. Hum Pathol. 1993;24(5):463–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Guidi AJ, Fischer L, Harris JR, et al. Microvessel density and distribution in ductal carcinoma in situ of the breast. J Natl Cancer Inst. 1994;86(8):614–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Engels K, Fox SB, Whitehouse RM, et al. Distinct angiogenic patterns are associated with high grade in situ ductal carcinomas of the breast. J Pathol. 1997;181(2):207–12.PubMedCrossRefGoogle Scholar
  23. 23.
    Lagios MD, Westdahl PR, Margolin FR, et al. Duct carcinoma in situ: relationship of extent of non-invasive disease to the frequency of occult invasion, multicentricity, lymph node metastases and short-term treatment failures. Cancer. 1982;50(7):1309–14.PubMedCrossRefGoogle Scholar
  24. 24.
    Holland R, Hendriks JH. Microcalcifications associated with ductal carcinoma in situ: mammographic-pathologic correlation. Semin Diagn Pathol. 1994;11(3):181–92.PubMedGoogle Scholar
  25. 25.
    Faverly DRG, Burgers L, Bult P, et al. Three dimensional imaging of mammary ductal carcinoma in situ: clinical implications. Semin Diagn Pathol. 1994;11(3):193–8.PubMedGoogle Scholar
  26. 26.
    Solin LJ, Kurtz J, Fourquet A, et al. Fifteen year results of breast-conserving surgery and definitive breast irradiation for the treatment of ductal carcinoma in situ of the breast. J Clin Oncol. 1996;14(3):754–63.PubMedGoogle Scholar
  27. 27.
    Scott MA, Lagios MD, Axelsson K, et al. Ductal carcinoma in situ of the breast: reproducibility of histologic subtype analysis. Hum Pathol. 1997;28(8):967–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Holland R, Peterse JL, Millis RR, et al. Ductal carcinoma in situ: a proposal for a new classification. Semin Diagn Pathol. 1994;11(3):167–80.PubMedGoogle Scholar
  29. 29.
    Sloane JP, Amendoeira I, Apostolikas N, et al. Consistency achieved by 23 European pathologists in categorizing ductal carcinoma in situ of the breast using five classifications. European Commission Working Group on Breast Screening Pathology. Hum Pathol. 1998;29(10):1056–62.PubMedGoogle Scholar
  30. 30.
    Livasy CA, Perou CM, Karaca G, et al. Identification of basal-like subtype of breast ductal carcinoma in situ. Hum Pathol. 2007;38(2):197–204.PubMedCrossRefGoogle Scholar
  31. 31.
    Bryan BB, Schnitt SJ, Collins LC. Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer. Mod Pathol. 2006;19(5):617–21.PubMedCrossRefGoogle Scholar
  32. 32.
    Claus EB, Chu P, Howe CL, et al. Pathobiologic findings in DCIS of the breast: morphologic features, angiogenesis, HER2/neu and hormone receptors. Exp Mol Pathol. 2001;70(3):303–16.PubMedCrossRefGoogle Scholar
  33. 33.
    Siziopikou KP, Khan S. Correlation of HER2 gene amplification with expression of the apoptosis-suppressing genes bcl-2 and bcl-x-L in ductal carcinoma in situ of the breast. Appl Immunohistochem Mol Morphol. 2005;13(1):14–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Lebeau A, Unholzer A, Amann G, et al. EGFR, HER2/neu, cyclin D1, p21 and p53 in correlation to cell proliferation and steroid hormone receptor status in ductal carcinoma in situ of the breast. Breast Cancer Res Treat. 2003;79(2):187–98.PubMedCrossRefGoogle Scholar
  35. 35.
    Cornfield DB, Palazzo JP, Schwartz GF, et al. The prognostic significance of multiple morphologic features and biologic markers in ductal carcinoma in situ of the breast: a study of a large cohort of patients treated with surgery alone. Cancer. 2004;100(11):2317–27.PubMedCrossRefGoogle Scholar
  36. 36.
    Barnes NL, Khavari S, Boland GP, et al. Absence of HER4 expression predicts recurrence of ductal carcinoma in situ of the breast. Clin Cancer Res. 2005;11(6):2163–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Collins LC, Schnitt SJ. HER2 protein overexpression in estrogen receptor-positive ductal carcinoma in situ of the breast: frequency and implications for tamoxifen therapy. Mod Pathol. 2005;18(5):615–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Provenzano E, Hopper JL, Giles GG, et al. Biological markers that predict recurrence in ductal carcinoma in situ of the breast. Eur J Cancer. 2003;39(5):622–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Rodrigues NA, Dillon D, Carter D, et al. Differences in the pathologic and molecular features of intraductal breast carcinoma between younger and older women. Cancer. 2003;97(6):1393–403.PubMedCrossRefGoogle Scholar
  40. 40.
    Perin T, Canzonieri V, Massarut S, et al. Immunohistochemical evaluation of multiple biological markers in ductal carcinoma in situ of the breast. Eur J Cancer. 1996;32A(7):1148–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Ringberg A, Anagnostaki L, Anderson H, et al. Cell biological factors in ductal carcinoma in situ (DCIS) of the breast-relationship to ipsilateral local recurrence and histopathological characteristics. Eur J Cancer. 2001;37(12):1514–22.PubMedCrossRefGoogle Scholar
  42. 42.
    Bijker N, Peterse JL, Duchateau L, et al. Histological type and marker expression of the primary tumour compared with its local recurrence after breast-conserving therapy for ductal carcinoma in situ. Br J Cancer. 2001;84(4):539–44.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Ramachandra S, Machin L, Ashley S, et al. Immunohistochemical distribution of c-erbB-2 in in situ breast carcinoma—a detailed morphological analysis. J Pathol. 1990;161(1):7–14.PubMedCrossRefGoogle Scholar
  44. 44.
    Schimmelpenning H, Eriksson ET, Pallis L, et al. Immunohistochemical c-erbB-2 protooncogene expression and nuclear DNA content in human mammary carcinoma in situ. Am J Clin Pathol. 1992;97(5 Suppl 1):S48–52.PubMedGoogle Scholar
  45. 45.
    Bobrow LG, Happerfield LC, Gregory WM, et al. Ductal carcinoma in situ: assessment of necrosis and nuclear morphology and their association with biological markers. J Pathol. 1995;176(4):333–41.PubMedCrossRefGoogle Scholar
  46. 46.
    Leal CB, Schmitt FC, Bento MJ, et al. Ductal carcinoma in situ of the breast. Histologic categorization and its relationship to ploidy and immunohistochemical expression of hormone receptors, p53, and c-erbB-2 protein. Cancer. 1995;75(8):2123–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Somerville JE, Clarke LA, Biggart JD. c-erbB-2 overexpression and histological type of in situ and invasive breast carcinoma. J Clin Pathol. 1992;45(1):16–20.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Siziopikou KP, Anderson SJ, Cobleigh MA, et al. Preliminary results of centralized HER2 testing in ductal carcinoma in situ of the breast (DCIS): NSABP B-43. Breast Cancer Res Treat. 2013;142(2):415–21.PubMedCrossRefGoogle Scholar
  49. 49.
    Lopez-Garcia MA, Geyer FC, Lacroix-Triki M, et al. Breast cancer precursors revisited: molecular features and progression pathways. Histopathology. 2010;57(2):171–92.PubMedCrossRefGoogle Scholar
  50. 50.
    Ellis MJ, Coop A, Singh B, et al. Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB1 and/or ErbB2-positive, estrogen receptor positive primary breast cancer: evidence from a phase III randomized trial. J Clin Oncol. 2001;19(18):3808–16.PubMedGoogle Scholar
  51. 51.
    Dowsett M. Overexpression of HER2 as a resistance mechanism to hormonal therapy for breast cancer. Endocr Relat Cancer. 2001;8(3):191–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Benz CC, Scott GK, Sarup JC, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat. 1992;24(2):85–95.PubMedCrossRefGoogle Scholar
  53. 53.
    Nicholson RI, Hutcheson IR, Harper ME, et al. Modulation of epidermal growth factor receptor in endocrine-resistant, estrogen-receptor-positive breast cancer. Ann N Y Acad Sci. 2002;963:104–15.PubMedCrossRefGoogle Scholar
  54. 54.
    Osborne CK, Shou J, Massarweh S, et al. Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res. 2005;11(2 pt 2):865s–70s.PubMedGoogle Scholar
  55. 55.
    Slamon, DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.PubMedCrossRefGoogle Scholar
  56. 56.
    Bazell R. HER2: the making of Herceptin, a revolutionary treatment for breast cancer. New York: Random House; 1998.Google Scholar
  57. 57.
    Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17(9):2639–48.PubMedGoogle Scholar
  58. 58.
    Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.PubMedCrossRefGoogle Scholar
  59. 59.
    Perez EA, Romond EH, Vera J, et al. Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer: joint analysis of data from NCCTG N9831 and NSABP B-31. J Clin Oncol. 2011;29(25):3366–73.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Goldhirsch A, Gelber RD, Piccart-Gebhart MJ, et al. 2 years versus 1 year of adjuvant trastuzumab for HER2-positive breast cancer (HERA): an open-label, randomised controlled trial. Lancet. 2013;382(9897):1021–28.PubMedCrossRefGoogle Scholar
  61. 61.
    Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Herceptin Prescribing Information. http://www.gene.com/download/pdf/herceptin_prescribing.pdf. Accessed on 23 Sept 2014.
  63. 63.
    Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Darby S, McGale P, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378(9804):1707–16.PubMedCrossRefGoogle Scholar
  64. 64.
    Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Correa C, McGale P, et al. Overview of the randomized trials of radiotherapy in ductal carcinoma in situ of the breast. J Natl Cancer Inst Monogr. 2010;2010(41):162–77.PubMedCrossRefGoogle Scholar
  65. 65.
    Yu D, Hung MC. Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene. 2000;19(53):6115–21.PubMedCrossRefGoogle Scholar
  66. 66.
    Rodrigues L, Mansi J, Griffiths J. Radiation enhances the antitumor effect of herceptin on c-neu/HER2 mammary carcinomas in transgenic oncomice. Proc Am Assoc Cancer Res. 2003;44:30, Abstract 132.Google Scholar
  67. 67.
    Liang K, Lu Y, Jin W, et al. Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther. 2003;2(11):1113–20.PubMedGoogle Scholar
  68. 68.
    Alanyali SD, Bozkurt E, Alanyali H, et al. Radiosensitization of HER2-positive breast cancer cell lines with trastuzumab. 2013 ASCO Annual Meeting. J Clin Oncol. 2013;31(15s):abstr e11501.Google Scholar
  69. 69.
    Sartor CI. Epidermal growth factor family receptors and inhibitors: radiation response modulators. Semin Radiat Oncol. 2003;13(1):22–30.PubMedCrossRefGoogle Scholar
  70. 70.
    Milas L, Mason K, Hunter N, et al. In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res. 2000;6(2):701–8.PubMedGoogle Scholar
  71. 71.
    Nasu S, Ang KK, Fan Z, et al. C225 antiepidermal growth factor receptor antibody enhances tumor radiocurability. Int J Radiat Oncol Biol Phys. 2001;51(2):474–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Huang SM, Bock JM, Harari PM. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res. 1999;59(8):1935–40.PubMedGoogle Scholar
  73. 73.
    Huang SM, Harari PM. Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res. 2000;6(6):2166–74.PubMedGoogle Scholar
  74. 74.
    Huang SM, Li J, Armstrong EA. Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res. 2002;62(15):4300–6.PubMedGoogle Scholar
  75. 75.
    Huang SM, Li J, Harari PM. Molecular inhibition of angiogenesis and metastatic potential in human squamous cell carcinomas after epidermal growth factor receptor blockade. Mol Cancer Ther. 2002;1(7):507–14.PubMedGoogle Scholar
  76. 76.
    Liang K, Ang KK, Milas L, et al. The epidermal growth factor receptor mediates radioresistance. Int J Radiat Oncol Biol Phys. 2003;57(1):246–54.PubMedCrossRefGoogle Scholar
  77. 77.
    Harari PM, Huang SM. Epidermal growth factor receptor modulation of radiation response: preclinical and clinical development. Semin Radiat Oncol. 2002;12(3 Suppl 2):21–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Uno M, Otsuki T, Kurebayashi J, et al. Anti-HER2-antibody enhances irradiation-induced growth inhibition in head and neck carcinoma. Int J Cancer. 2001;94(4):474–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Wattenberg MM, Kwilas AR, Gameiro SR, et al. Expanding the use of monoclonal antibody therapy of cancer by using ionising radiation to upregulate antibody targets. Br J Cancer. 2014;110(6):1472–80.PubMedCrossRefGoogle Scholar
  80. 80.
    von Minckwitz G, Darb-Esfahani S, Loibl S, et al. Responsiveness of adjacent ductal carcinoma in situ and changes in HER2 status after neoadjuvant chemotherapy/trastuzumab treatment in early breast cancer—results from the GeparQuattro study (GBG 40). Breast Cancer Res Treat. 2012;132(3):863–70.CrossRefGoogle Scholar
  81. 81.
    Estevez LG, Suarez A, Calvo I, et al. Molecular effects of lapatinib in HER2 positive ductal carcinoma in situ (DCIS). Cancer Res. 2012;72(24_suppl 3):SABCS P5-18-15.Google Scholar
  82. 82.
    ClinicalTrials.gov Identifier: NCT00555152, PI Powell Brown, MD.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Amelia Tower
    • 1
  • Ruta D. Rao
    • 3
  • Kalliopi P. Siziopikou
    • 2
    • 4
  • Melody A. Cobleigh
    • 3
  • Thomas B. Julian
    • 1
    • 5
    • 6
    • 7
  1. 1.Division of Breast Surgical OncologyAllegheny General HospitalPittsburghUSA
  2. 2.Robert H. Lurie Comprehensive Cancer CenterChicagoUSA
  3. 3.Section of Medical Oncology, Department of Internal MedicineRush University Medical CenterChicagoUSA
  4. 4.Breast Pathology Section, Department of PathologyNorthwestern University Feinberg School of MedicineChicagoUSA
  5. 5.WPAHS Breast Surgical OncologyAllegheny Health NetworkPittsburghUSA
  6. 6.Temple University School of MedicinePhiladelphiaUSA
  7. 7.Medical AffairsNational Surgical Adjuvant Breast and Bowel Project (NSABP)PittsburghUSA

Personalised recommendations