Skip to main content

Setting the Stage: Myosin, Actin, Actomyosin and ATP

  • Chapter
  • First Online:
Mechanism of Muscular Contraction

Part of the book series: Perspectives in Physiology ((PHYSIOL))

  • 2301 Accesses

Abstract

It is important to understand the prevailing views of muscle contraction just before the proposals of the sliding filament model of contraction appeared in 1954. The spectacular rise of muscle biochemistry in the first half of the twentieth century has been chronicled by Dorothy M. Needham in her classic book (1971): Machina Carnis: The Biochemistry of Muscular Contraction In Its Historical Development. Also Marcel Florkin has written a massive five volume history of biochemistry. The volume that is of interest here is entitled: History of the Identification of the Sources of Free Energy in Organisms (1975). We will concentrate on those aspects of research on muscle that relate closely to the contractile process itself.

…the theory of contraction by folding of continuous filaments, which paid no attention even to the existence of the striations and which was completely wrong, came to dominate the field for half a century.

A.F. Huxley (1977)

The simple statement that contraction in muscle is essentially a reaction of actomyosin, ATP, and ions was my laboratory’s main contribution to the problem of muscular contraction. (Szent-Gyorgyi 1953. With permission Elsevier)

Albert Szent-Györgyi (1953)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dorothy Moyle Needham (1896–1987) investigated muscle biochemistry at the University of Cambridge for over 40 years. She was among the first ten females elected as a Fellow of the Royal Society (Teich 2003). She has gained lasting international acclaim for her book Machina Carnis, long out of print, that is now back in print in paperback form.

  2. 2.

    Birefringence or double refraction is the optical property of a material in which the refractive index is different for light polarized in one plane compared to the orthogonal plane. This effect can occur only if the structure of the material is anisotropic (directionally dependent), as opposed to isotropic, which implies homogeneity in all directions. A birefringent material observed between crossed polarizers appears bright against a dark background when at an angle of 45° (or 90° multiples thereof) to the optical axis of the microscope. There are four types of birefringence. Intrinsic birefringence originates from the inherent asymmetry of chemical bonds. Form birefringence results from regular arrangement of objects which may or may not be intrinsically birefringent. Flow birefringence results from a preferential arrangement of structures induced by a moving stream of liquid which is a special case of form birefringence. Strain birefringence is produced by mechanical stress which may cause a preferential alignment of particles. The birefringence can be either positive or negative depending upon the relative magnitudes of the two refractive indices. In the case of positive uniaxial form birefringence the preferential orientation of the submicroscopic particles is with their longest dimension in the direction of the optic axis. With negative uniaxial form birefringence the shortest dimension of the particles is oriented parallel with the optical axis. For further information, see Slayter (1976).

  3. 3.

    Meyerhof assumed that the heat of a reaction or enthalpy change, ΔH, was a guide to the free energy change of that reaction, ΔF (now usually designated as ΔG). The assumption was that the entropy change, ΔS, was insignificant or nearly so. See Chap. 5 for more information about measuring enthalpy and free energy changes in contracting muscle.

  4. 4.

    Thomas Henry Huxley (1825–1895), the famous nineteenth century English biologist, was Andrew Huxley’s grandfather. He was also considered to be Charles Darwin’s “bulldog” because he championed the reclusive Darwin’s theory of evolution to the general public.

  5. 5.

    In 2000, the Faculty of Medicine and the Faculty of Pharmacy within the University of Szeged was renamed the Albert Szent-Gyorgyi Medical and Pharmaceutical Center.

  6. 6.

    The German Ministry of Science and Education banned the general use in scientific libraries of the magazine Nature on November 12, 1937 for “outrageous and vile attacks on German science and the national socialist state”. The journal Nature was also banned in Hungary (Hossfeld and Olsson 2013).

  7. 7.

    Wide angle X-ray diffraction is a technique that is used to determine the crystalline structure of polymers at the Angstrom level. In contrast small-angle X-ray scattering is a technique where the scattering of X-rays by a sample exhibits inhomogeneities in the nm-range. The small angle X-ray diffraction has been utilized brilliantly by Hugh E. Huxley to elucidate structural details of intact muscle (see Chaps. 2, 6 and 9).

  8. 8.

    Bruno Straub (1914–1996) was the Director of the Institute of Biochemistry in the Hungarian Academy of Sciences from 1970 to 1985. In 1985 he was elected to the Hungarian Parliament and became the President of Hungary (Chairman of the Hungarian Presidential Council), a largely ceremonial position, in 1988 a year before the declared end of Communist rule in 1989 (New York Times, February 18, 1996).

References

  • Astbury WT (1947) Proc Croonian Lecture: on the structure of biological fibres and the problem of muscle. Proc R Soc Lond B B134:303–328

    Article  Google Scholar 

  • Banga I, Szent-Gyorgyi A (1941–1942) Preparation and properties of myosin A and B. In: Studies from the Institute of Medical Chemistry, vol 1. University of Szeged, Szeged, p 5–15

    Google Scholar 

  • Brucke E (1858) Untersuchungen uber den bau der muskelfasern mit hulfe des polarisirten lichtes. Denkschr Akad Wiss Wien, math.-naturwiss Kl 15:69–84

    Google Scholar 

  • Buchthal F, Deutsch A, Knappeis CG, Munch-Petersen A (1947) On the effect of adenosine triphosphate on myosin threads. Acta Physiol Scand 13:167–180

    Article  CAS  PubMed  Google Scholar 

  • Cain DF, Davies RE (1962) Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Comm 8:361–366

    Article  CAS  PubMed  Google Scholar 

  • Draper MH, Hodge AJ (1949) Studies on muscle with the electron microscope. I. Ultrastructure of toad striated muscle. Aust J Exp Biol Med 27:465–505

    Article  Google Scholar 

  • Dubisson M (1954) Muscular contraction. Charles C. Thomas, Springfield

    Google Scholar 

  • Edsall JT (1988) Reminiscences on Albert Szent-Gyorgyi. Biol Bull 174:214–233

    Google Scholar 

  • Eggleton P, Eggleton GP (1927) The inorganic phosphate and a labile form of organic phosphate in the gastrocnemius of the frog. Biochem J 21:190–195

    PubMed Central  CAS  PubMed  Google Scholar 

  • Embden G, Hirsch-Kauffmann E, Lehnartz E, Deuticke HJ (1926) Uber den verlauf der milchsaurebildung beim tetanus. Z f physiol Chem 151:209–231

    Article  CAS  Google Scholar 

  • Engelhardt WA, Ljubimova MN (1939) Myosine and adenosinetriphosphate. Nature 144:668–669

    Article  CAS  Google Scholar 

  • Engelmann TW (1875) Contractilitat und doppelbrechung. Pflugers Arch ges Physiol 11:432–464

    Article  Google Scholar 

  • Erdos T (1943a) Rigor, contracture, and ATP. In: Studies from the Institute of Medical Chemistry, vol 3. University of Szeged, Szeged, p 51–56

    Google Scholar 

  • Erdos T (1943b) On the relation of the activity and contraction of actomyosin threads. In: Studies from the Institute of Medical Chemistry, vol 3. University of Szeged, Szeged, p 57–58

    Google Scholar 

  • Fiske CH, SubbaRow Y (1927) The nature of the inorganic phosphate in voluntary muscle. Science 65:401–403

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, SubbaRow Y (1929) Phosphorus compounds of muscle and liver. Science 70:381–382

    Article  CAS  PubMed  Google Scholar 

  • Fletcher WM, Hopkins FG (1907) Lactic acid in amphibian muscle. J Physiol 35:247–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Florkin M (1975) A history of biochemistry. Part III. History of the Identification of the sources of free energy in organisms. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry, vol 31. Elsevier, Amsterdam

    Google Scholar 

  • Franklin KJ (1968) A short history of the international congresses of physiologists, 1889–1938. In: Fenn WO (ed) History of the international congress of physiological sciences 1889–1968. American Physiological Society, p 3–14

    Google Scholar 

  • Hall CE, Jakus MA, Schmitt FO (1946) An investigation of cross striations and myosin filaments in muscle. Biol Bull 90:32–50

    Article  CAS  PubMed  Google Scholar 

  • Heilbrunn LV (1956) The dynamics of living protoplasm. Academic

    Google Scholar 

  • Heilbrunn LV, Wiercinski FJ (1947) The action of various cations on muscle protoplasm. J Cell Comp Physiol 29:15–32

    Article  CAS  Google Scholar 

  • Hill AV (1932) The revolution in muscle physiology. Physiol Rev 12:56–67

    CAS  Google Scholar 

  • Hill AV, Hartree W (1920) The four phases of heat-production of muscle. J Physiol 54:84–128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hossfeld U, Olsson L (2013) History of the journal Nature. Nature and Hitler. doi:10.1038/nature06242

  • Huxley AF (1957) Muscle structure and theories of contraction. In: Butler JAV, Katz B (eds) Progress in biophysics and biophysical chemistry, vol 7. Pergamon Press, London, pp 255–318

    Google Scholar 

  • Huxley AF (1977) Looking back on muscle. In: The pursuit of nature: informal essays on the history of physiology. Cambridge University Press, p 23–64

    Google Scholar 

  • Huxley AF, Niedergerke R (1954) Interference microscopy of living muscle fibres. Nature 173:971–973

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976

    Article  CAS  PubMed  Google Scholar 

  • Huxley TH (1880) The crayfish. An introduction to the study of zoology. Paul Kegan, London

    Book  Google Scholar 

  • Kruhoffer P, Crone C (1972) Einar Lundsgaard, 1899–1968. Ergebnisse der physiologie, biologischen chemie und experimentellen pharmakologie. 65:1–14

    Google Scholar 

  • Kuhne W (1864) Untersuchungen uber das protoplasma and die contractilitat. Engelmann, Leipzig

    Book  Google Scholar 

  • Langen P, Hucho F (2008) Karl Lohmann and the discovery of ATP. Angew Chem Int Ed 47:1824–1827

    Article  CAS  Google Scholar 

  • Lipmann F (1941) Metabolic generation and utilization of phosphate bond energy. Adv Enzymol 1:99–162

    CAS  Google Scholar 

  • Lohmann K (1929) Uber die pyrophosphatfraktion im muskel. Naturwiss 17:624–625

    CAS  Google Scholar 

  • Lohmann K (1934) Uber die enzymatische aufspaltung der kreatinphosphorsaure; zugleich ein beitrag zum chemismus der muskelkontraktion. Biochem Z 271:264–277

    CAS  Google Scholar 

  • Lohmann K (1935) Konstitution der adenylpyrophosphorsaure and adeninediphosphorsaure. Biochem Z 282:120–123

    CAS  Google Scholar 

  • Lundsgaard E (1930a) Untersuchungen uber muskelkontraktion ohne milchsaure. Biochem Z 217:162–177

    CAS  Google Scholar 

  • Lundsgaard E (1930b) Weitere untersuchungen uber muskelkontraktionen ohne milchsaurebildung. Biochem Z 227:51–83

    CAS  Google Scholar 

  • Lundsgaard E (1930c) Uber die einwirkung der monoiodoessigsaure auf den spaltungs- und oxydationsstoffwechsel. Biochem Z 220:8–18

    CAS  Google Scholar 

  • Maruyama K (1991) The discovery of adenosine triphosphate and the establishment of its structure. J Hist Biol 24:145–154

    Article  Google Scholar 

  • Matoltsy AG, Gerendas M (1947) Isotropy in the I striation of striated muscle. Nature 159:502–503

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin JA (1988) Reminiscences on Albert Szent-Gyorgyi. Biol Bull 174:214–233

    Google Scholar 

  • Meyer KH (1929) Uber feinbau, festigkeit und kontraktilitat tierische gewebe. Biochem Z 214:253

    CAS  Google Scholar 

  • Meyerhof O (1920) Ueber die beziehung der milchsaure zur warmebildung and arbeitsleistung des muskels in der anaerobiose. Arch f ges Physiol 182:232–283

    Article  CAS  Google Scholar 

  • Meyerhof O, Lohmann K (1928) Uber die naturlichen guanidinophosphorsauren (phosphagene) in der quergestreiften muskulatur. II. Mitteilung: die physikalisch-chemischen eigenschaften der guanidinophosphorsauren. Biochem Z 196:49–72

    CAS  Google Scholar 

  • Meyerhof O, Lohmann K (1932) Uber energetische wechselbeziehungen zwischen dem umsatz der phosphorsaureester im muskelextrakt. Biochem Z 253:431–461

    CAS  Google Scholar 

  • Mommaerts WF (1992) Who discovered actin? Bioessays 14:57–59

    Article  CAS  PubMed  Google Scholar 

  • Moss RW (1988) Free radical: Albert Szent-Gyorgyi and the battle over vitamin C. Paragon House Publishers, New York

    Google Scholar 

  • Needham DM (1960) Biochemistry of muscular action. In: Bourne GH (ed) The structure and function of muscle, vol 2, Academic Press, New York, pp 55–104

    Google Scholar 

  • Needham DM (1971) Machina carnis: the biochemistry of muscular contraction in its historical development. Cambridge University Press

    Google Scholar 

  • Parnas JK, Wagner R (1914) Ueber den kohlehydratumsatz isolierter amphibienmuskeln und uber die beziehungen zwischen kohlehydratschwund und milchsaurebildung im muskel. Biochem Z 61:387–427

    CAS  Google Scholar 

  • Rozsa G, Szent-Gyorgyi A, Wyckoff RWG (1950) The fine structure of myofibrils. Exp Cell Res 1:194–205

    Article  Google Scholar 

  • Schipiloff C, Danilewsky A (1881) Uber die Natur der anisotropen Substanzen des quergestreiften Muskeln und ihre raumliche Verheilung im Muskelbundel. Z f Physiol Chem 5:349–365

    Google Scholar 

  • Slayter E (1976) Optical methods in biology. Robert E. Krieger Publishing Company, Huntington

    Google Scholar 

  • Straub FB (1942) Actin. In: Studies from the Institute of Medical Chemistry, vol 2. University of Szeged, Szeged, p 3–15

    Google Scholar 

  • Straub FB (1943) Actin II. In: Studies from the Institute of Medical Chemistry, vol 3. University of Szeged, Szeged, p 23–37

    Google Scholar 

  • Straub FB, Feuer G (1950) Adenosinetriphosphate the functional group of actin. Biochim Biophys Acta 4:455–470

    Article  CAS  Google Scholar 

  • Stubel H (1923) Die ursache der doppelbrechung der quergestreiften muskelfaser. Pfl Arch f ges Physiol 201:629–645

    Article  Google Scholar 

  • Swammerdam J (1758) The history of insects, Pt. II, in Biblia Naturae. Trans T Floyd Seyffert, Lond, p 122–132

    Google Scholar 

  • Szent-Gyorgyi A (1941–1942a) The contraction of myosin threads. In: Studies from the Institute of Medical Chemistry, vol 1. University of Szeged, Szeged, p 17–26.

    Google Scholar 

  • Szent-Gyorgyi A (1941–1942b) Discussion. In: Studies from the Institute of Medical Chemistry, vol 1. University of Szeged, Szeged, p 67–71

    Google Scholar 

  • Szent-Gyorgyi A (1945) Studies on muscle. Acta Physiol Scand 9(suppl 25):1–115

    Google Scholar 

  • Szent-Gyorgyi A (1948) Nature of life: a study on muscle. Academic

    Google Scholar 

  • Szent-Gyorgyi A (1949) Free-energy relations and contraction of actomyosin. Biol Bull 96:140–161

    Article  CAS  PubMed  Google Scholar 

  • Szent-Gyorgyi A (1951) Chemistry of muscular contraction, 2nd edn. Academic, New York

    Google Scholar 

  • Szent-Gyorgyi A (1952) The structure and chemistry of muscle. A lecture. Albert Szent-Gyorgyi Papers, National Library of Medicine

    Google Scholar 

  • Szent-Gyorgyi A (1953) Chemical physiology of contraction in body and heart muscle. Academic, New York

    Google Scholar 

  • Szent-Gyorgyi A (1963) Lost in the twentieth century. Annu Rev Biochem 32:1–15

    Article  CAS  Google Scholar 

  • Szent-Gyorgyi AvN (1965) Nobel lectures. Physiology or Medicine, 1922–1941. Elsevier, p 433–451

    Google Scholar 

  • Szent-Gyorgyi AG (2004) Interview with Andrew Szent-Gyorgyi. Profiles in science. The Albert Szent-Gyorgyi Papers, National Library of Medicine

    Google Scholar 

  • Teich M (2003) Dorothy Mary Moyle Needham: 22 September 1896–22 December 1987. Biogr Mems Fell R Soc Lond 49:351–365

    Article  Google Scholar 

  • von Muralt A (1984) A life with several facets. Annu Rev Physiol 46:1–15

    Article  Google Scholar 

  • von Muralt AL, Edsall JT (1930a) Studies in the physical chemistry of muscle globulin. III. The anisotropy of myosin and the angle of isocline. J Biol Chem 89:315–350

    Google Scholar 

  • von Muralt AL, Edsall JT (1930b) Studies in the physical chemistry of muscle globulin. IV. The anisotropy of myosin and double refraction of flow. J Biol Chem 89:351–386

    Google Scholar 

  • Weber HH (1935) Der feinbau und die mechanischen eigenschaften des myosin-fadens. Pflugers Arch ges Physiol 235:205–233

    Article  Google Scholar 

  • Weber A (1951) Muskelkontraktion und modelkontraktion. Biochim Biophys Acta 7:214–224

    Article  CAS  PubMed  Google Scholar 

  • Weber HH (1958) The motility of muscle and cells. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Weber HH, Portzehl H (1952) Muscle contraction and fibrous muscle proteins. Adv Protein Chem 7:161–252

    Article  CAS  PubMed  Google Scholar 

  • Weizsacker V (1914) Myothermic experiments in salt-solutions in relation to the various stages of a muscular contraction. J Physiol 48:396–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiener O (1912) Die theorie des mischkorpers fur das feld der stationaren stromung. I. Die mittelwertsatze fur kraft, polarisation und energie. Abd d kon Sachs Gesellsch d Wissensch Math-phys Kl 32:507.

    Google Scholar 

  • Zotterman Y (1968) The Minnekahda voyage, 1929. In: Fenn WO (ed) History of the international congress of physiological sciences 1889–1968. American Physiological Society, p 3–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Physiological Society

About this chapter

Cite this chapter

Rall, J.A. (2014). Setting the Stage: Myosin, Actin, Actomyosin and ATP. In: Mechanism of Muscular Contraction. Perspectives in Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2007-5_1

Download citation

Publish with us

Policies and ethics