Skip to main content

Clinical and Research Applications of Bone Mineral Density Examinations

  • Chapter
  • First Online:
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

  • 3064 Accesses

Abstract

For over a quarter of a century, various types of examinations measuring bone mineral density (BMD) yielded essential information about bone health and fracture risk and have made a significant impact on osteoporosis research as well as on patient management. Yet care must be exercised when interpreting the results of these, “densitometric,” examinations, as pitfalls are common and may be overlooked. Bone densitometric techniques allow quantitative measurement of BMD and are commonly divided into central and peripheral. Central methods allow measurement of BMD in the spine and proximal femur and include dual X-ray absorptiometry (DXA) and quantitative computed tomography (QCT). Peripheral methods allow measurement of BMD in the phalanges, forearm, tibia, or calcaneus and include peripheral dual X-ray absorptiometry (pDXA) and peripheral quantitative computed tomography (pQCT). Although it does not measure BMD, quantitative ultrasound (QUS) is often included with peripheral methods. This chapter reviews these techniques and puts into perspective the utility of each of these measurements for evaluating bone health and fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jergas M, Uffmann M, Escher H, et al. Interobserver variation in the detection of osteopenia by radiography and comparison with dual X-ray absorptiometry of the lumbar spine. Skeletal Radiol. 1994;23(3):195–9.

    CAS  PubMed  Google Scholar 

  2. Finsen V, Anda S. Accuracy of visually estimated bone mineralization in routine radiographs of the lower extremity. Skeletal Radiol. 1988;17:270.

    CAS  PubMed  Google Scholar 

  3. Haller J, Andre MP, Resnick D, et al. Detection of thoracolumbar vertebral body destruction with lateral spine radiography. Part II Clinical investigation with computed tomography. Invest Radiol. 1990;25:523.

    CAS  PubMed  Google Scholar 

  4. Haller J, Andre MP, Resnick D, et al. Detection of thoracolumbar vertebral body destruction with lateral spine radiography. Part I: Investigation in cadavers. Invest Radiol. 1990;25:517.

    CAS  PubMed  Google Scholar 

  5. Genant HK, Engelke K, Fuerst T, et al. Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res. 1996;11(6):707–30.

    CAS  PubMed  Google Scholar 

  6. Adams JE. Quantitative computed tomography. Eur J Radiol. 2009;71(3):415–24.

    PubMed  Google Scholar 

  7. Lilley J, Walters BG, Heath DA, Drolc Z. In vivo and in vitro precision for bone density measured by dual-energy X-ray absorption. Osteoporos Int. 1991;1(3):141–6.

    CAS  PubMed  Google Scholar 

  8. Shepherd JA, Fan B, Lu Y, Lewiecki EM, Miller P, Genant HK. Comparison of BMD precision for Prodigy and Delphi spine and femur scans. Osteoporos Int. 2006;17(9):1303–8.

    CAS  PubMed  Google Scholar 

  9. Lang TF, Li J, Harris ST, Genant HK. Assessment of vertebral bone mineral density using volumetric quantitative CT. J Comput Assist Tomogr. 1999;23(1):130–7.

    CAS  PubMed  Google Scholar 

  10. Braillon PM. Quantitative computed tomography precision and accuracy for long-term follow-up of bone mineral density measurements: a five year in vitro assessment. J Clin Densitom. 2002;5(3):259–66.

    PubMed  Google Scholar 

  11. Blake GM, Fogelman I. Technical principles of dual energy X-ray absorptiometry. Semin Nucl Med. 1997;27(3):210–28.

    CAS  PubMed  Google Scholar 

  12. Nevill AM, Holder RL, Maffulli N, et al. Adjusting bone mass for differences in projected bone area and other confounding variables: an allometric perspective. J Bone Miner Res. 2002;17(4):703–8.

    PubMed  Google Scholar 

  13. Melton 3rd LJ, Khosla S, Achenbach SJ, O’Connor MK, O’Fallon WM, Riggs BL. Effects of body size and skeletal site on the estimated prevalence of osteoporosis in women and men. Osteoporos Int. 2000;11(11):977–83.

    PubMed  Google Scholar 

  14. Taaffe DR, Cauley JA, Danielson M, et al. Race and sex effects on the association between muscle strength, soft tissue, and bone mineral density in healthy elders: the health, aging, and body composition study. J Bone Miner Res. 2001;16:1343–52.

    CAS  PubMed  Google Scholar 

  15. Fieldings KT, Backrach LK, Hudes ML, Crawford PB, Wang MC. Ethnic differences in bone mass of young women vary with method of assessment. J Clin Densitom. 2002;5(3):229–38.

    Google Scholar 

  16. Reid IR, Evans MC, Ames RW. Volumetric bone density of the lumbar spine is related to fat mass but not lean mass in normal postmenopausal women. Osteoporos Int. 1994;4:362–7.

    CAS  PubMed  Google Scholar 

  17. Martini G, Valenti R, Giovani S, Nuti R. Age-related changes in body composition of healthy and osteoporotic women. Maturitas. 1997;27:25–33.

    CAS  PubMed  Google Scholar 

  18. Nguyen TV, Howard GM, Kelly PJ, Eisman JA. Bone mass, lean mass, and fat mass: same genes or same environments? Am J Epidemiol. 1998;147:3–16.

    CAS  PubMed  Google Scholar 

  19. Tatoń G, Rokita E, Wróbel A, Korkosz M. Combining areal DXA bone mineral density and vertebrae postero-anterior width improves the prediction of vertebral strength. Skeletal Radiol. 2013;42(12):1717–25.

    PubMed Central  PubMed  Google Scholar 

  20. Cvijetić S, Korsić M. Apparent bone mineral density estimated from DXA in healthy men and women. Osteoporos Int. 2004;15(4):295–300.

    PubMed  Google Scholar 

  21. Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, Mahboubi S, Shepherd JA, Hangartner TN, Frederick MM, Winer KK, Kalkwarf HJ. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab. 2010;95(3):1265–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Blake GM, Naeem M, Boutros M. Comparison of effective dose to children and adults from dual X-ray absorptiometry examinations. Bone. 2006;38(6):935–42.

    PubMed  Google Scholar 

  23. Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707–14.

    PubMed Central  PubMed  Google Scholar 

  24. Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures. Lancet. 1993;341:72–5.

    CAS  PubMed  Google Scholar 

  25. Porter RW, Miller CG, Grainger D, et al. Prediction of hip fracture in elderly women: a prospective study. Br Med J. 1990;301(6753):638–41.

    CAS  Google Scholar 

  26. Melton 3rd LJ, Atkinson EJ, O’Fallon WM, et al. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res. 1993;8(10):1227–33.

    PubMed  Google Scholar 

  27. Black DM, Cummings SR, Genant HK, et al. Axial and appendicular bone density predict fractures in older women. J Bone Miner Res. 1992;7(6):633–8.

    CAS  PubMed  Google Scholar 

  28. Duboeuf F, Hans D, Schott AM, et al. Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS Study. J Bone Miner Res. 1997;12(11):1895–902.

    CAS  PubMed  Google Scholar 

  29. Nevitt MC, Johnell O, Black DM, et al. Bone mineral density predicts non-spine fractures in very elderly women. Study of Osteoporotic Fractures Research Group. Osteoporos Int. 1994;4(6):325–31.

    CAS  PubMed  Google Scholar 

  30. Schott AM, Cormier C, Hans D, et al. How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS Prospective Study. Osteoporos Int. 1998;8(3):247–54.

    CAS  PubMed  Google Scholar 

  31. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton 3rd LJ, O’Neill T, Pols H, Reeve J, Silman A, Tenenhouse A. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20(7):1185–94.

    PubMed  Google Scholar 

  32. Johansson H, Kanis JA, Oden A, Johnell O, McCloskey E. BMD, clinical risk factors and their combination for hip fracture prevention. Osteoporos Int. 2009;20(10):1675–82.

    CAS  PubMed  Google Scholar 

  33. de Laet CE, Van Hout BA, Burger H, et al. Hip fracture prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner Res. 1998;13(10):1587–93.

    PubMed  Google Scholar 

  34. de Laet CE, van Hout BA, Burger H, et al. Bone density and risk of hip fracture in men and women: cross sectional analysis. Br Med J. 1997;315(7102):221–5.

    Google Scholar 

  35. Cummings SR, Cawthon PM, Ensrud KE, Cauley JA, Fink HA, Orwoll ES, Osteoporotic Fractures in Men (MrOS) Research Groups; Study of Osteoporotic Fractures Research Groups. BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J Bone Miner Res. 2006;21(10):1550–6.

    PubMed  Google Scholar 

  36. Cummings SR, Black DM, Thompson DE. Effect of alendronate reduces on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA. 1998;280(24):2077–82.

    CAS  PubMed  Google Scholar 

  37. Orwoll ES, Oviatt SK, McClung MR, Deftos LJ, Sexton G. The rate of bone mineral loss in normal men and the effects of calcium and cholecalciferol supplementation. Ann Intern Med. 1990;112:29–34.

    CAS  PubMed  Google Scholar 

  38. Chesnut 3rd CH, Silverman S, Andriano K, et al. A randomized trial of nasal spray salmon calcitonin in post-menopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med. 2000;109(4):267–76.

    CAS  PubMed  Google Scholar 

  39. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med. 1997;337:670–6.

    CAS  PubMed  Google Scholar 

  40. Delmas PD, Bjarnason NH, Mitlak BH, et al. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med. 1997;337:1641–7.

    CAS  PubMed  Google Scholar 

  41. Felson DT, Zhang Y, Hannan MT, Kiel DP, Wilson PW, Anderson JJ. The effect of postmenopausal estrogen therapy on bone density in elderly women. N Engl J Med. 1993;329:1141–6.

    CAS  PubMed  Google Scholar 

  42. Francis RM. The effects of testosterone on osteoporosis in men. Clin Endocrinol. 1999;50:411–4.

    CAS  Google Scholar 

  43. McClung MR, Geusens P, Miller PD, et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med. 2001;344:333–40.

    CAS  PubMed  Google Scholar 

  44. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.

    CAS  PubMed  Google Scholar 

  45. Chesnut CH, Ettinger MP, Miller PD, Baylink DJ, Emkey R, Harris ST, Wasnich RD, Watts NB, Schimmer RC, Recker RR. Ibandronate produces significant, similar antifracture efficacy in North American and European women: new clinical findings from BONE. Curr Med Res Opin. 2005;21(3):391–401.

    CAS  PubMed  Google Scholar 

  46. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR. HORIZON Pivotal Fracture Trial. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809–22.

    CAS  PubMed  Google Scholar 

  47. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C. FREEDOM Trial. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.

    CAS  PubMed  Google Scholar 

  48. Hamdy RC, Petak SM, Lenchik L. Which central dual X-ray absorptiometry skeletal sites and regions of interest should be used to determine the diagnosis of osteoporosis? J Clin Densitom. 2002;5(suppl):S11–8.

    PubMed  Google Scholar 

  49. Lenchik L, Kiebzak GM, Blunt BA. What is the role of serial bone mineral density measurements in patient management? J Clin Densitom. 2002;5(suppl):S29–38.

    PubMed  Google Scholar 

  50. National Osteoporosis Foundation. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Washington, DC: National Osteoporosis Foundation; 2010.

    Google Scholar 

  51. Lim LS, Hoeksema LJ, Sherin K. ACPM Prevention Practice Committee. Screening for osteoporosis in the adult U.S. population: ACPM position statement on preventive practice. Am J Prev Med. 2009;36(4):366–75.

    PubMed  Google Scholar 

  52. Watts NB, Bilezikian JP, Camacho PM, Greenspan SL, Harris ST, Hodgson SF, Kleerekoper M, Luckey MM, McClung MR, Pollack RP, Petak SM, AACE Osteoporosis Task Force. American association of clinical endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Pract. 2010;16 Suppl 3:1–37.

    PubMed  Google Scholar 

  53. Grossman JM, Gordon R, Ranganath VK, Deal C, Caplan L, Chen W, Curtis JR, Furst DE, McMahon M, Patkar NM, Volkmann E, Saag KG. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res (Hoboken). 2010;62(11):1515–26.

    Google Scholar 

  54. Watts NB, Adler RA, Bilezikian JP, Drake MT, Eastell R, Orwoll ES, Finkelstein JS. Endocrine Society. Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(6):1802–22.

    CAS  PubMed  Google Scholar 

  55. Schousboe JT, Shepherd JA, Bilezikian JP, Baim S. Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J Clin Densitom. 2013;16(4):455–66.

    PubMed  Google Scholar 

  56. Watts NB, Leslie WD, Foldes AJ, Miller PD. 2013 International Society for Clinical Densitometry Position Development Conference: Task Force on Normative Databases. J Clin Densitom. 2013;16(4):472–81.

    PubMed  Google Scholar 

  57. Ott SM, Kilcoyne RF, Chesnut 3rd CH. Longitudinal changes in bone mass after one year as measured by different techniques in patients with osteoporosis. Calcif Tissue Int. 1986;39(3):133–8.

    CAS  PubMed  Google Scholar 

  58. Rosenthal DI, Ganott MA, Wyshak G, Slovik DM, Doppelt SH, Neer RM. Quantitative computed tomography for spinal density measurement Factors affecting precision. Invest Radiol. 1985;20(3):306–10.

    CAS  PubMed  Google Scholar 

  59. Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, Felsenberg D, Ito M, Prevrhal S, Hans DB, Lewiecki EM. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11(1):123–62.

    PubMed  Google Scholar 

  60. American College of Radiology. ACR–SPR–SSR Practice Guideline for the Performance of Quantitative Computed Tomography (QCT) Bone Densitometry. http://www.acr.org/~/media/ACR/Documents/PGTS/guidelines/QCT.pdf.

  61. Register TC, Divers J, Bowden DW, Carr JJ, Lenchik L, Wagenknecht LE, Hightower RC, Xu J, Smith SC, Hruska KA, Langefeld CD, Freedman BI. Relationships between serum adiponectin and bone density, adiposity and calcified atherosclerotic plaque in the African American-Diabetes Heart Study. J Clin Endocrinol Metab. 2013;98(5):1916–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Freedman BI, Bowden DW, Ziegler JT, Langefeld CD, Lehtinen AB, Rudock ME, Lenchik L, Hruska KA, Register TC, Carr JJ. Bone morphogenetic protein 7 (BMP7) gene polymorphisms are associated with inverse relationships between vascular calcification and BMD: the Diabetes Heart Study. J Bone Miner Res. 2009;24(10):1719–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Carr JJ, Register TC, Hsu FC, Lohman K, Lenchik L, Bowden DW, Langefeld CD, Xu J, Rich SS, Wagenknecht LE, Freedman BI. Calcified atherosclerotic plaque and bone mineral density in type 2 diabetes: the diabetes heart study. Bone. 2008;42(1):43–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Register TC, Lenchik L, Hsu FC, Lohman KK, Freedman BI, Bowden DW, Carr JJ. Type 2 diabetes is not independently associated with spinal trabecular volumetric bone mineral density measured by QCT in the Diabetes Heart Study. Bone. 2006;39(3):628–33.

    CAS  PubMed  Google Scholar 

  65. Lenchik L, Hsu FC, Register TC, Lohman KK, Freedman BI, Langefeld CD, Bowden DW, Carr JJ. Heritability of spinal trabecular volumetric bone mineral density measured by QCT in the Diabetes Heart Study. Calcif Tissue Int. 2004;75(4):305–12.

    CAS  PubMed  Google Scholar 

  66. Lenchik L, Shi R, Register TC, Beck SR, Langefeld CD, Carr JJ. Measurement of trabecular bone mineral density in the thoracic spine using cardiac gated quantitative computed tomography. J Comput Assist Tomogr. 2004;28(1):134–9.

    PubMed  Google Scholar 

  67. Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, Langefeld CD, Carr JJ, Bowden DW. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone. 2003;33(4):646–51.

    CAS  PubMed  Google Scholar 

  68. Carr JJ, Shi R, Lenchik L, Langefeld C, Lange L, Bowden DW. Validation of quantitative computed tomography for measurement of bone mineral density in the thoracic spine during cardiac gated protocol for coronary vascular calcium. Radiology. 2001;221:380.

    Google Scholar 

  69. Bouxsein ML, Melton 3rd LJ, Riggs BL, et al. Age- and sex-specific differences in the factor of risk for vertebral fracture: a population-based study using QCT. J Bone Miner Res. 2006;21(9):1475–82.

    PubMed  Google Scholar 

  70. Riggs BL, Melton 3rd LJ, Robb RA, et al. Population-based analysis of the relationship of whole bone strength indices and fall-related loads to age and sex-specific patterns of hip and wrist fractures. J Bone Miner Res. 2006;21(2):315–23.

    PubMed  Google Scholar 

  71. Keaveny TM, Donley DW, Hoffmann PF, Mitlak BH, Glass EV, San Martin JA. Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res. 2007;22(1):149–57.

    CAS  PubMed  Google Scholar 

  72. Bousson VD, Adams J, Engelke K, Aout M, Cohen-Solal M, Bergot C, Haguenauer D, Goldberg D, Champion K, Aksouh R, Vicaut E, Laredo JD. In vivo discrimination of hip fracture with quantitative computed tomography: results from the prospective European Femur Fracture Study (EFFECT). J Bone Miner Res. 2011;26(4):881–93.

    PubMed  Google Scholar 

  73. Christiansen BA, Kopperdahl DL, Kiel DP, Keaveny TM, Bouxsein ML. Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. J Bone Miner Res. 2011;26(5):974–83.

    PubMed Central  PubMed  Google Scholar 

  74. Hans DB, Shepherd JA, Schwartz EN, Reid DM, Blake GM, Fordham JN, Fuerst T, Hadji P, Itabashi A, Krieg MA, Lewiecki EM. Peripheral dual-energy X-ray absorptiometry in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11(1):188–206.

    PubMed  Google Scholar 

  75. Krieg MA, Barkmann R, Gonnelli S, Stewart A, Bauer DC, Del Rio BL, Kaufman JJ, Lorenc R, Miller PD, Olszynski WP, Poiana C, Schott AM, Lewiecki EM, Hans D. Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11(1):163–87.

    PubMed  Google Scholar 

  76. Pluskiewicz W, Halaba Z. First prospective report with the use of quantitative ultrasound (QUS) in children and adolescents. J Clin Densitom. 2001;4(2):173.

    CAS  PubMed  Google Scholar 

  77. van den Bergh JP, Noordam C, Ozyilmaz A, Hermus AR, Smals AG, Otten BJ. Calcaneal ultrasound imaging in healthy children and adolescents: relation of the ultrasound parameters BUA and SOS to age, body weight, height, foot dimensions and pubertal stage. Osteoporos Int. 2000;11(11):967–76.

    PubMed  Google Scholar 

  78. Falk B, Sadres E, Constantini N, Eliakim A, Zigel L, Foldes AJ. Quantitative ultrasound (QUS) of the tibia: a sensitive tool for the detection of bone changes in growing boys. J Pediatr Endocrinol Metab. 2000;13(8):1129–35.

    CAS  PubMed  Google Scholar 

  79. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br Med J. 1996;312:1254–9.

    CAS  Google Scholar 

  80. Miller PD, Siris ES, Barrett-Connor E, et al. Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res. 2002;17(12):2222–30.

    PubMed  Google Scholar 

  81. Huang C, Ross PD, Yates AJ, et al. Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int. 1998;63(5):380–4.

    CAS  PubMed  Google Scholar 

  82. Cummings SR, Black DM, Nevitt MC, et al. Appendicular bone density and age predict hip fracture in women. The Study of Osteoporotic Fractures Research Group. JAMA. 1990;263(5):665–8.

    CAS  PubMed  Google Scholar 

  83. Cleghorn D, Polley K, Bellon M, et al. Fracture rates as a function of forearm mineral density in normal postmenopausal women: retrospective and prospective data. Calcif Tissue Int. 1991;49:161–3.

    CAS  PubMed  Google Scholar 

  84. Bauer DC, Gluer CC, Cauley JA, et al. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study Study of Osteoporotic Fractures Research Group. Arch Intern Med. 1997;157(6):629–34.

    CAS  PubMed  Google Scholar 

  85. Hans D, Dargent-Molina P, Schott AM, et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS Prospective Study. Lancet. 1996;348(9026):511–4.

    CAS  PubMed  Google Scholar 

  86. Stewart A, Torgerson DJ, Reid DM. Prediction of fractures in perimenopausal women: a comparison of dual energy x-ray absorptiometry and broadband ultrasound attenuation. Ann Rheum Dis. 1996;55:140–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am. 1977;59(7):954–62.

    CAS  PubMed  Google Scholar 

  88. Gibson LJ. The mechanical behaviour of cancellous bone. J Biomech. 1985;18(5):317–28.

    CAS  PubMed  Google Scholar 

  89. Hvid I, Jensen NC, Bunger C, Solund K, Djurhuus JC. Bone mineral assay: its relation to the mechanical strength of cancellous bone. Eng Med. 1985;14(2):79–83.

    CAS  PubMed  Google Scholar 

  90. Hvid I, Hansen SL. Trabecular bone strength patterns at the proximal tibial epiphysis. J Orthop Res. 1985;3(4):464–72.

    CAS  PubMed  Google Scholar 

  91. Linde F, Hvid I, Pongsoipetch B. Energy absorptive properties of human trabecular bone specimens during axial compression. J Orthoped Res. 1989;7(3):432–9.

    CAS  Google Scholar 

  92. Moro M, Hecker AT, Bouxsein ML, Myers ER. Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA. Calcif Tissue Int. 1995;56(3):206–9.

    CAS  PubMed  Google Scholar 

  93. Cheng XG, Nicholson PH, Boonen S, et al. Prediction of vertebral strength in vitro by spinal bone densitometry and calcaneal ultrasound. J Bone Miner Res. 1997;12(10):1721–8.

    CAS  PubMed  Google Scholar 

  94. Eriksson SA, Isberg BO, Lindgren JU. Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography. Calcif Tissue Int. 1989;44(4):243–50.

    CAS  PubMed  Google Scholar 

  95. Bates DW, Black DM, Cummings SR. Clinical use of bone densitometry: clinical applications. JAMA. 2002;288(15):1898–900.

    PubMed  Google Scholar 

  96. Cummings SR, Bates D, Black DM. Clinical use of bone densitometry: scientific review. JAMA. 2002;288(15):1889–97.

    PubMed  Google Scholar 

  97. Lenchik L, Sartoris DJ. Current concepts in osteoporosis. AJR Am J Roentgenol. 1997;168(4):905–11.

    CAS  PubMed  Google Scholar 

  98. Dasher LG, Newton CD, Lenchik L. Dual X-ray absorptiometry in today’s clinical practice. Radiol Clin North Am. 2010;48(3):541–60.

    PubMed  Google Scholar 

  99. Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int. 1994;4(6):368–81.

    CAS  PubMed  Google Scholar 

  100. Hui SL, Zhou L, Evans R, et al. Rates of growth and loss of bone mineral in the spine and femoral neck in white females. Osteoporos Int. 1999;9(3):200–5.

    CAS  PubMed  Google Scholar 

  101. Binkley NC, Schmeer P, Wasnich RD, Lenchik L. What are the criteria by which a densitometric diagnosis of osteoporosis can be made in males and non-Caucasians? J Clin Densitom. 2002;5(suppl):S19–27.

    PubMed  Google Scholar 

  102. Kanis JA, Johnell O, Oden A, De Laet C, Mellstrom D. Diagnosis of osteoporosis and fracture threshold in men. Calcif Tissue Int. 2001;69:218–21.

    CAS  PubMed  Google Scholar 

  103. Selby PL, Davies M, Adams JE. Do men and women fracture bones at similar bone densities? Osteoporos Int. 2000;11:153–7.

    CAS  PubMed  Google Scholar 

  104. Cauley JA, Zmuda JM, Palmero L, Stone KL, Black DM, Nevitt MC. Do men and women fracture at the same BMD level. J Bone Miner Res. 2000;15:S144.

    Google Scholar 

  105. Majumdar SR, Leslie WD. Of fracture thresholds and bone mineral density reference data: does one size really fit all? J Clin Densitom. 2013;16(4):543–8.

    PubMed  Google Scholar 

  106. Leslie WD, Majumdar SR. Treatment implications for men when switching from male to female bone mineral density reference data: the Manitoba Bone Density Program. J Clin Densitom. 2013;16(4):537–42.

    PubMed  Google Scholar 

  107. Drake MT, Murad MH, Mauck KF, Lane MA, Undavalli C, Elraiyah T, Stuart LM, Prasad C, Shahrour A, Mullan RJ, Hazem A, Erwin PJ, Montori VM. Clinical review. Risk factors for low bone mass-related fractures in men: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2012;97(6):1861–70.

    CAS  PubMed  Google Scholar 

  108. Schousboe JT, Tanner SB, Leslie WD. Definition of osteoporosis by bone density criteria in men: effect of using female instead of male young reference data depends on skeletal site and densitometer manufacturer. J Clin Densitom. 2014;17(2):301–6. Epub ahead of print] PMID: 24269168.

    PubMed  Google Scholar 

  109. Leslie WD, Adler RA, El-Hajj Fuleihan G, Hodsman AB, Kendler DL, McClung M, Miller PD, Watts NB, International Society for Clinical Densitometry. WHO classification to populations other than postmenopausal Caucasian women: the 2005 ISCD Official Positions. J Clin Densitom. 2006;9(1):22–30.

    PubMed  Google Scholar 

  110. Miller PD, Njeh CF, Jankowski LG, Lenchik L. What are the standards by which bone mass measurement at peripheral skeletal sites should be used in the diagnosis of osteoporosis? J Clin Densitom. 2002;5(suppl):S39–45.

    PubMed  Google Scholar 

  111. Faulkner KG, Roberts LA, McClung MR. Discrepancies in normative data between Lunar and Hologic DXA systems. Osteoporos Int. 1996;6:432–6.

    CAS  PubMed  Google Scholar 

  112. Black D. A proposal to establish comparable diagnostic categories for bone densitometry based on hip fracture risk among Caucasian women over age 65 years. J Bone Miner Res. 2001;16:S342.

    Google Scholar 

  113. Faulkner KG, Von Stetten E, Miller PD. Discordance in patient classification using T scores. J Clin Densitom. 1999;2:343–50.

    CAS  PubMed  Google Scholar 

  114. Grampp S, Genant HK, Mathur A, et al. Comparisons of noninvasive bone mineral measurements in assessing age–related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res. 1997;12(5):697–711.

    CAS  PubMed  Google Scholar 

  115. Lewiecki EM, Compston JE, Miller PD, Adachi JD, Adams JE, Leslie WD, Kanis JA, Moayyeri A, Adler RA, Hans DB, Kendler DL, Diez-Perez A, Krieg MA, Masri BK, Lorenc RR, Bauer DC, Blake GM, Josse RG, Clark P, Khan AA. FRAX® Position Development Conference Members. Official Positions for FRAX® Bone Mineral Density and FRAX® simplification from Joint Official Positions Development Conference of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX®. J Clin Densitom. 2011;14(3):226–36.

    PubMed  Google Scholar 

  116. Lewiecki EM, Compston JE, Miller PD, Adachi JD, Adams JE, Leslie WD, Kanis JA, FRAX® Position Development Conference Members. FRAX(®). FRAX(®) bone mineral density task force of the 2010 joint international society for clinical densitometry & international osteoporosis foundation position development conference. J Clin Densitom. 2011;14(3):223–5.

    PubMed  Google Scholar 

  117. Leslie WD, Brennan SL, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA. Direct comparison of eight national FRAX® tools for fracture prediction and treatment qualification in Canadian women. Arch Osteoporos. 2013;8(1–2):145.

    CAS  PubMed  Google Scholar 

  118. Rubin KH, Abrahamsen B, Friis-Holmberg T, Hjelmborg JV, Bech M, Hermann AP, Barkmann R, Glüer CC, Brixen K. Comparison of different screening tools (FRAX®, OST, ORAI, OSIRIS, SCORE and age alone) to identify women with increased risk of fracture. A population-based prospective study. Bone. 2013;56(1):16–22.

    PubMed  Google Scholar 

  119. Chapurlat R. Contribution and limitations of the FRAX® tool. Joint Bone Spine. 2013;80(4):355–7.

    PubMed  Google Scholar 

  120. Melton 3rd LJ, Atkinson EJ, Achenbach SJ, Kanis JA, Therneau TM, Johansson H, Khosla S, Amin S. Potential Extensions of the US FRAX Algorithm. J Osteoporos. 2012;2012:528790.

    PubMed Central  PubMed  Google Scholar 

  121. McClung MR. To FRAX or not to FRAX. J Bone Miner Res. 2012;27(6):1240–2.

    PubMed  Google Scholar 

  122. Bonnick SL, Johnston Jr CC, Kleerekoper M, et al. Importance of precision in bone density measurements. J Clin Densitom. 2001;4:105–10.

    CAS  PubMed  Google Scholar 

  123. Lenchik L, Rochmis P, Sartoris DJ. Optimized interpretation and reporting of dual X-ray absorptiometry (DXA) scans. Am J Roentgenol. 1998;171(6):1509–20.

    CAS  Google Scholar 

  124. Varney LF, Parker RA, Vincelette A, Greenspan SL. Classification of osteoporosis and osteopenia in postmenopausal women is dependent on site-specific analysis. J Clin Densitom. 1999;3:275–83.

    Google Scholar 

  125. Woodson G. Dual X-ray absorptiometry T score concordance and discordance between the hip and spine measurement sites. J Clin Densitom. 2000;3:319–24.

    CAS  PubMed  Google Scholar 

  126. Yu W, Gluer CC, Fuerst T, et al. Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int. 1995;57:169–74.

    CAS  PubMed  Google Scholar 

  127. Drinka PJ, DeSmet AA, Bauwens SF, Rogot A. The effect of overlying calcification on lumbar bone densitometry. Calcif Tissue Int. 1992;50(6):507–10.

    CAS  PubMed  Google Scholar 

  128. Preidler KW, White LS, Tashkin J, et al. Dual-energy X-ray absorptiometric densitometry in osteoarthritis of the hip. Influence of secondary bone remodeling of the femoral neck. Acta Radiol. 1997;38:539–42.

    CAS  PubMed  Google Scholar 

  129. Akesson K, Gardsell P, Sernbo I, Johnell O, Obrant KJ. Earlier wrist fracture: a confounding factor in distal forearm bone screening. Osteoporos Int. 1992;2(4):201–4.

    CAS  PubMed  Google Scholar 

  130. Johnson ML, Gong G, Kimberling W, Recker SM, Kimmel DB, Recker RB. Linkage of a gene causing high bone mass to human chromosome 11 (11q12–13). Am J Hum Genet. 1997;60:1326–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Boyden LM, Mao J, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513–21.

    CAS  PubMed  Google Scholar 

  132. Rivadeneira F, Styrkársdottir U, Estrada K, Halldórsson BV, Hsu YH, Richards JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Grundberg E, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra B, Pastinen T, Pols HA, Sigurdsson G, Soranzo N, Thorleifsson G, Thorsteinsdottir U, Williams FM, Wilson SG, Zhou Y, Ralston SH, van Duijn CM, Spector T, Kiel DP, Stefansson K, Ioannidis JP, Uitterlinden AG. Genetic Factors for Osteoporosis (GEFOS) Consortium. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41(11):1199–206.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, Oei L, Albagha OM, Amin N, Kemp JP, Koller DL, Li G, Liu CT, Minster RL, Moayyeri A, Vandenput L, Willner D, Xiao SM, Yerges-Armstrong LM, Zheng HF, Alonso N, Eriksson J, Kammerer CM, Kaptoge SK, Leo PJ, Thorleifsson G, Wilson SG, Wilson JF, Aalto V, Alen M, Aragaki AK, Aspelund T, Center JR, Dailiana Z, Duggan DJ, Garcia M, Garcia-Giralt N, Giroux S, Hallmans G, Hocking LJ, Husted LB, Jameson KA, Khusainova R, Kim GS, Kooperberg C, Koromila T, Kruk M, Laaksonen M, Lacroix AZ, Lee SH, Leung PC, Lewis JR, Masi L, Mencej-Bedrac S, Nguyen TV, Nogues X, Patel MS, Prezelj J, Rose LM, Scollen S, Siggeirsdottir K, Smith AV, Svensson O, Trompet S, Trummer O, van Schoor NM, Woo J, Zhu K, Balcells S, Brandi ML, Buckley BM, Cheng S, Christiansen C, Cooper C, Dedoussis G, Ford I, Frost M, Goltzman D, González-Macías J, Kähönen M, Karlsson M, Khusnutdinova E, Koh JM, Kollia P, Langdahl BL, Leslie WD, Lips P, Ljunggren Ö, Lorenc RS, Marc J, Mellström D, Obermayer-Pietsch B, Olmos JM, Pettersson-Kymmer U, Reid DM, Riancho JA, Ridker PM, Rousseau F, Slagboom PE, Tang NL, Urreizti R, Van Hul W, Viikari J, Zarrabeitia MT, Aulchenko YS, Castano-Betancourt M, Grundberg E, Herrera L, Ingvarsson T, Johannsdottir H, Kwan T, Li R, Luben R, Medina-Gómez C, Palsson ST, Reppe S, Rotter JI, Sigurdsson G, van Meurs JB, Verlaan D, Williams FM, Wood AR, Zhou Y, Gautvik KM, Pastinen T, Raychaudhuri S, Cauley JA, Chasman DI, Clark GR, Cummings SR, Danoy P, Dennison EM, Eastell R, Eisman JA, Gudnason V, Hofman A, Jackson RD, Jones G, Jukema JW, Khaw KT, Lehtimäki T, Liu Y, Lorentzon M, McCloskey E, Mitchell BD, Nandakumar K, Nicholson GC, Oostra BA, Peacock M, Pols HA, Prince RL, Raitakari O, Reid IR, Robbins J, Sambrook PN, Sham PC, Shuldiner AR, Tylavsky FA, van Duijn CM, Wareham NJ, Cupples LA, Econs MJ, Evans DM, Harris TB, Kung AW, Psaty BM, Reeve J, Spector TD, Streeten EA, Zillikens MC, Thorsteinsdottir U, Ohlsson C, Karasik D, Richards JB, Brown MA, Stefansson K, Uitterlinden AG, Ralston SH, Ioannidis JP, Kiel DP, Rivadeneira F. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 2012; 44(5):491–501.

    Google Scholar 

  134. Zhang L, Choi HJ, Estrada K, Leo PJ, Li J, Pei YF, Zhang Y, Lin Y, Shen H, Liu YZ, Liu Y, Zhao Y, Zhang JG, Tian Q, Wang YP, Han Y, Ran S, Hai R, Zhu XZ, Wu S, Yan H, Liu X, Yang TL, Guo Y, Zhang F, Guo YF, Chen Y, Chen X, Tan L, Zhang L, Deng FY, Deng H, Rivadeneira F, Duncan EL, Lee JY, Han BG, Cho NH, Nicholson GC, McCloskey E, Eastell R, Prince RL, Eisman JA, Jones G, Reid IR, Sambrook PN, Dennison EM, Danoy P, Yerges-Armstrong LM, Streeten EA, Hu T, Xiang S, Papasian CJ, Brown MA, Shin CS, Uitterlinden AG, Deng HW. Multistage genome-wide association meta-analyses identified two new loci for bone mineral density. Hum Mol Genet. 2013;23(7):1923–33. Epub ahead of print] PubMed PMID: 24249740.

    CAS  PubMed  Google Scholar 

  135. Bakhireva LN, Barrett-Connor EL, Laughlin GA, Kritz-Silverstein D. Differences in association of bone mineral density with coronary artery calcification in men and women: the Rancho Bernardo Study. Menopause. 2005;12(6):691–8.

    PubMed  Google Scholar 

  136. Hyder JA, Allison MA, Barrett-Connor E, Detrano R, Wong ND, Sirlin C, Gapstur SM, Ouyang P, Carr JJ, Criqui MH. Bone mineral density and atherosclerosis: the Multi-Ethnic Study of Atherosclerosis. Abdominal Aortic Calcium Study. Atherosclerosis. 2010;209(1):283–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Divers J, Register TC, Langefeld CD, et al. Relationships between calcified atherosclerotic plaque and bone mineral density in African Americans with type 2 diabetes. J Bone Miner Res. 2011;26(7):1554–60.

    CAS  PubMed  Google Scholar 

  138. Freedman BI, Register TC. Effect of race and genetics on vitamin D metabolism, bone and vascular health. Nat Rev Nephrol. 2012;8(8):459–66.

    CAS  PubMed  Google Scholar 

  139. Lees CJ, Register TC, Turner CH, Wang T, Stancill M, Jerome CP. Effects of raloxifene on bone density, biomarkers, and histomorphometric and biomechanical measures in ovariectomized cynomolgus monkeys. Menopause. 2002;9:320–8. PubMed PMID: 12218720.

    PubMed  Google Scholar 

  140. Register TC, Jayo MJ, Anthony MS. Soy phytoestrogens do not prevent bone loss in postmenopausal monkeys. J Clin Endocrinol Metab. 2003;88:4362–70. PubMed PMID: 12970311.

    CAS  PubMed  Google Scholar 

  141. Engelke K, Libanati C, Fuerst T, Zysset P, Genant HK. Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporos Rep. 2013;11:246–55. doi:10.1007/s11914-013-0147-2, PubMed PMID: 23712690.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Lenchik M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lenchik, L., Wuertzer, S., Register, T.C. (2015). Clinical and Research Applications of Bone Mineral Density Examinations. In: Holick, M., Nieves, J. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2001-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2001-3_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2000-6

  • Online ISBN: 978-1-4939-2001-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics