Advertisement

HIV/AIDS and Bone Health: The Role of Nutrition

  • Stephanie Shiau
  • Stephen M. ArpadiEmail author
  • Michael T. Yin
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Human immunodeficiency virus (HIV) is a retrovirus that infects immune cells such as CD4+ (helper) T lymphocytes, macrophages and dendritic cells, leading to progressive failure of the immune system. Transmission of HIV can occur through sexual exposure, mother-to-child transmission, injection drug use, transfusion of contaminated blood products, and occupational exposure. The life expectancy of the HIV-positive population has increased; estimates indicate that most HIV-infected persons in the USA will be 50 years or older by 2015. HIV-infected individuals will remain at high risk for osteopenia and osteoporosis, and fractures as their life expectancy increases. This is likely to be an important source of morbidity. Those surviving early-life infection with HIV who initiate treatment at young ages may be especially at risk for adverse effects on bone health. Young men who acquired HIV early in life were reported to have lower peak bone mass by DXA. The etiology of osteoporosis in HIV-infected persons is complex and may involve both HIV disease itself and antiretroviral treatment. Traditional risk factors, such as smoking, hypogonadism, and low body weight, also play a role. Optimal screening and treatment recommendations are not well developed. Due to the higher risk of low BMD compared to HIV-uninfected populations and evidence suggesting higher fracture risk, DXA screening has been recommended by some but not all expert panels for HIV-infected postmenopausal women and men aged 50 years or older, particularly those with additional risk factors. There is a considerable knowledge gap on how best to optimize bone health. Nutritional considerations should be advised; provision of a diet that is rich in vitamin D, especially in areas with limited exposure to sunlight, may also help to ensure the best possible bone growth. HIV-infected individuals, especially children, should also participate in weight-bearing exercises and avoid detrimental behaviors such as smoking to improve their bone health. More research on specific nutritional interventions is needed.

Keywords

HIV Nutrition Fracture Vitamin D Antiretroviral therapy 

References

  1. 1.
    High KP, Brennan-Ing M, Clifford DB, et al. HIV and aging: state of knowledge and areas of critical need for research. A report to the NIH office of AIDS research by the HIV and aging working group. J Acquir Immune Defic Syndr. 2012;60 Suppl 1:S1–8. doi: 10.1097/QAI.0b013e31825a3668.PubMedGoogle Scholar
  2. 2.
    Sackoff JE, Hanna DB, Pfeiffer MR, Torian LV. Causes of death among persons with AIDS in the era of highly active antiretroviral therapy: New York City. Ann Intern Med. 2006;145(6):397–406.PubMedGoogle Scholar
  3. 3.
    Brown TT, McComsey GA. Osteopenia and osteoporosis in patients with HIV: a review of current concepts. Curr Infect Dis Rep. 2006;8(2):162–70.PubMedGoogle Scholar
  4. 4.
    Hasse B, Ledergerber B, Furrer H, et al. Morbidity and aging in HIV-infected persons: the Swiss HIV cohort study. Clin Infect Dis. 2011;53(11):1130–9. doi: 10.1093/cid/cir626.PubMedGoogle Scholar
  5. 5.
    Guaraldi G, Orlando G, Zona S, et al. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis. 2011;53(11):1120–6. doi: 10.1093/cid/cir627.PubMedGoogle Scholar
  6. 6.
    Deeks SG. Immune dysfunction, inflammation, and accelerated aging in patients on antiretroviral therapy. Top HIV Med. 2009;17(4):118–23.PubMedGoogle Scholar
  7. 7.
    McComsey GA, Tebas P, Shane E, et al. Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis. 2010;51(8):937–46. doi: 10.1086/656412.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS (London, England). 2006;20(17):2165–74. doi: 10.1097/QAD.0b013e32801022eb.Google Scholar
  9. 9.
    Shiau S, Broun EC, Arpadi SM, Yin MT. Incident fractures in HIV-infected individuals: a systematic review and meta-analysis. AIDS. 2013;27(12):1949–57.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Young B, Dao CN, Buchacz K, Baker R, Brooks JT. Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000-2006. Clin Infect Dis. 2011;52(8):1061–8. doi: 10.1093/cid/ciq242.PubMedGoogle Scholar
  11. 11.
    Hansen AB, Gerstoft J, Kronborg G, et al. Incidence of low and high-energy fractures in persons with and without HIV infection: a Danish population-based cohort study. AIDS (London, England). 2012;26(3):285–93. doi: 10.1097/QAD.0b013e32834ed8a7.Google Scholar
  12. 12.
    Tebas P, Powderly WG, Claxton S, et al. Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS (London, England). 2000;14(4):F63–7.Google Scholar
  13. 13.
    Knobel H, Guelar A, Vallecillo G, Nogues X, Diez A. Osteopenia in HIV-infected patients: is it the disease or is it the treatment? AIDS (London, England). 2001;15(6):807–8.Google Scholar
  14. 14.
    Carr A, Miller J, Eisman JA, Cooper DA. Osteopenia in HIV-infected men: association with asymptomatic lactic acidemia and lower weight pre-antiretroviral therapy. AIDS (London, England). 2001;15(6):703–9.Google Scholar
  15. 15.
    Cazanave C, Dupon M, Lavignolle-Aurillac V, et al. Reduced bone mineral density in HIV-infected patients: prevalence and associated factors. AIDS (London, England). 2008;22(3):395–402. doi:10.1097/QAD.0b013e3282f423dd.Google Scholar
  16. 16.
    Negredo E, Domingo P, Ferrer E, et al. Peak bone mass in young HIV-infected patients compared with healthy controls. J Acquir Immune Defic Syndr. 2013;65(2):207–12. doi: 10.1097/01.qai.0000435598.20104.d6.Google Scholar
  17. 17.
    Yin MT, McMahon DJ, Ferris DC, et al. Low bone mass and high bone turnover in postmenopausal human immunodeficiency virus-infected women. J Clin Endocrinol Metab. 2010;95(2):620–9. doi: 10.1210/jc.2009-0708.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Cazanave C, Dupon M, Lavignolle-Aurillac V, et al. Reduced bone mineral density in HIV-infected patients: prevalence and associated factors. AIDS. 2008;22(3):395–402.PubMedGoogle Scholar
  19. 19.
    Fakruddin JM, Laurence J. HIV envelope gp120-mediated regulation of osteoclastogenesis via receptor activator of nuclear factor kappa B ligand (RANKL) secretion and its modulation by certain HIV protease inhibitors through interferon-gamma/RANKL cross-talk. J Biol Chem. 2003;278(48):48251–8. doi: 10.1074/jbc.M304676200.PubMedGoogle Scholar
  20. 20.
    Jain RG, Lenhard JM. Select HIV protease inhibitors alter bone and fat metabolism ex vivo. J Biol Chem. 2002;277(22):19247–50. doi: 10.1074/jbc.C200069200.PubMedGoogle Scholar
  21. 21.
    Malizia AP, Cotter E, Chew N, Powderly WG, Doran PP. HIV protease inhibitors selectively induce gene expression alterations associated with reduced calcium deposition in primary human osteoblasts. AIDS Res Hum Retroviruses. 2007;23(2):243–50. doi: 10.1089/aid.2006.0084.PubMedGoogle Scholar
  22. 22.
    Grigsby IF, Pham L, Mansky LM, Gopalakrishnan R, Carlson AE, Mansky KC. Tenofovir treatment of primary osteoblasts alters gene expression profiles: implications for bone mineral density loss. Biochem Biophys Res Commun. 2010;394(1):48–53. doi: 10.1016/j.bbrc.2010.02.080.PubMedCentralPubMedGoogle Scholar
  23. 23.
    McComsey GA, Kitch D, Daar ES, et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis. 2011;203(12):1791–801. doi: 10.1093/infdis/jir188.PubMedCentralPubMedGoogle Scholar
  24. 24.
    van Vonderen MG, Lips P, van Agtmael MA, et al. First line zidovudine/lamivudine/lopinavir/ritonavir leads to greater bone loss compared to nevirapine/lopinavir/ritonavir. AIDS (London, England). 2009;23(11):1367–76. doi: 10.1097/QAD.0b013e32832c4947.Google Scholar
  25. 25.
    Stellbrink HJ, Orkin C, Arribas JR, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis. 2010;51(8):963–72. doi: 10.1086/656417.PubMedGoogle Scholar
  26. 26.
    Gallant JE, Staszewski S, Pozniak AL, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA. 2004;292(2):191–201. doi: 10.1001/jama.292.2.191.PubMedGoogle Scholar
  27. 27.
    Brown TT, McComsey GA, King MS, Qaqish RB, Bernstein BM, da Silva BA. Loss of bone mineral density after antiretroviral therapy initiation, independent of antiretroviral regimen. J Acquir Immune Defic Syndr. 2009;51(5):554–61. doi: 10.1097/QAI.0b013e3181adce44.PubMedGoogle Scholar
  28. 28.
    Mulligan K, Harris DR, Emmanuel P, et al. Low bone mass in behaviorally HIV-infected young men on antiretroviral therapy: Adolescent Trials Network Study 021B. Clin Infect Dis. 2012;55(3):461–8. doi: 10.1093/cid/cis455.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Liu AY, Vittinghoff E, Sellmeyer DE, et al. Bone mineral density in HIV-negative men participating in a tenofovir pre-exposure prophylaxis randomized clinical trial in San Francisco. PLoS One. 2011;6(8):e23688. doi: 10.1371/journal.pone.0023688.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Grant PM, Kitch D, McComsey GA, et al. Low baseline CD4+ count is associated with greater bone mineral density loss after antiretroviral therapy initiation. Clin Infect Dis. 2013;57(10):1483–8. doi: 10.1093/cid/cit538.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Bolland MJ, Grey A, Horne AM, et al. Stable bone mineral density over 6 years in HIV-infected men treated with highly active antiretroviral therapy (HAART). Clin Endocrinol (Oxf). 2012;76(5):643–8. doi: 10.1111/j.1365-2265.2011.04274.x.Google Scholar
  32. 32.
    Yin MT, Zhang CA, McMahon DJ, et al. Higher rates of bone loss in postmenopausal HIV-infected women: a longitudinal study. J Clin Endocrinol Metab. 2012;97(2):554–62. doi: 10.1210/jc.2011-2197.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Sharma A, Flom PL, Weedon J, Klein RS. Prospective study of bone mineral density changes in aging men with or at risk for HIV infection. AIDS (London, England). 2010;24(15):2337–45. doi: 10.1097/QAD.0b013e32833d7da7.Google Scholar
  34. 34.
    Triant VA, Brown TT, Lee H, Grinspoon SK. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab. 2008;93(9):3499–504.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Yin MT, Shi Q, Hoover DR, et al. Fracture incidence in HIV-infected women: results from the Women’s Interagency HIV Study. AIDS (London, England). 2010;24(17):2679–86. doi: 10.1097/QAD.0b013e32833f6294.Google Scholar
  36. 36.
    Walker-Harris V, Althoff K, Reynolds S, et al. Incident bone fracture in men with, or at risk for, HIV-infection in the Multicenter AIDS Cohort Study (MACS), 1996-2011. Washington, DC: XIX International AIDS Conference; 2012.Google Scholar
  37. 37.
    Womack JA, Goulet JL, Gibert C, et al. Increased risk of fragility fractures among HIV infected compared to uninfected male veterans. PLoS One. 2011;6(2):e17217. doi: 10.1371/journal.pone.0017217.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Bedimo R, Maalouf NM, Zhang S, Drechsler H, Tebas P. Osteoporotic fracture risk associated with cumulative exposure to tenofovir and other antiretroviral agents. AIDS (London, England). 2012;26(7):825–31. doi: 10.1097/QAD.0b013e32835192ae.Google Scholar
  39. 39.
    Yong MK, Elliott JH, Woolley IJ, Hoy JF. Low CD4 count is associated with an increased risk of fragility fracture in HIV-infected patients. J Acquir Immune Defic Syndr. 2011;57(3):205–10. doi: 10.1097/QAI.0b013e31821ecf4c.PubMedGoogle Scholar
  40. 40.
    Collin F, Duval X, Le Moing V, et al. Ten-year incidence and risk factors of bone fractures in a cohort of treated HIV1-infected adults. AIDS (London, England). 2009;23(8):1021–4. doi: 10.1097/QAD.0b013e3283292195.Google Scholar
  41. 41.
    Lo Re 3rd V, Volk J, Newcomb CW, et al. Risk of hip fracture associated with hepatitis C virus infection and hepatitis C/human immunodeficiency virus coinfection. Hepatology. 2012;56(5):1688–98.PubMedGoogle Scholar
  42. 42.
    Volk J, Localio R, Newcomb C, et al. HIV/HCV Co-infection increases fracture risk compared to HCV mono-infected, HIV mono-infected, and uninfected patients. 18th conference on retroviruses and opportunistic infections. Boston, MA; 2011.Google Scholar
  43. 43.
    Jacobson DL, Spiegelman D, Duggan C, et al. Predictors of bone mineral density in human immunodeficiency virus-1 infected children. J Pediatr Gastroenterol Nutr. 2005;41(3):339–46.PubMedGoogle Scholar
  44. 44.
    Arpadi SM, Horlick M, Thornton J, Cuff PA, Wang J, Kotler DP. Bone mineral content is lower in prepubertal HIV-infected children. J Acquir Immune Defic Syndr. 2002;29(5):450–4.PubMedGoogle Scholar
  45. 45.
    O'Brien KO, Razavi M, Henderson RA, Caballero B, Ellis KJ. Bone mineral content in girls perinatally infected with HIV. Am J Clin Nutr. 2001;73(4):821–6.PubMedGoogle Scholar
  46. 46.
    Zuccotti G, Vigano A, Gabiano C, et al. Antiretroviral therapy and bone mineral measurements in HIV-infected youths. Bone. 2010;46(6):1633–8. doi: 10.1016/j.bone.2010.02.029.PubMedGoogle Scholar
  47. 47.
    Mora S, Sala N, Bricalli D, Zuin G, Chiumello G, Vigano A. Bone mineral loss through increased bone turnover in HIV-infected children treated with highly active antiretroviral therapy. AIDS (London, England). 2001;15(14):1823–9.Google Scholar
  48. 48.
    Zamboni G, Antoniazzi F, Bertoldo F, Lauriola S, Antozzi L, Tato L. Altered bone metabolism in children infected with human immunodeficiency virus. Acta Paediatr (Oslo, Norway: 1992). 2003;92(1):12–6.Google Scholar
  49. 49.
    Vigano A, Zuccotti GV, Puzzovio M, et al. Tenofovir disoproxil fumarate and bone mineral density: a 60-month longitudinal study in a cohort of HIV-infected youths. Antivir Ther. 2010;15(7):1053–8. doi: 10.3851/imp1650.PubMedGoogle Scholar
  50. 50.
    Pitukcheewanont P, Safani D, Church J, Gilsanz V. Bone measures in HIV-1 infected children and adolescents: disparity between quantitative computed tomography and dual-energy X-ray absorptiometry measurements. Osteoporos Int. 2005;16(11):1393–6. doi: 10.1007/s00198-005-1849-9.PubMedGoogle Scholar
  51. 51.
    Jacobson DL, Lindsey JC, Gordon CM, et al. Total body and spinal bone mineral density across Tanner stage in perinatally HIV-infected and uninfected children and youth in PACTG 1045. AIDS. 2010;24(5):687–96.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Mora S, Zamproni I, Beccio S, Bianchi R, Giacomet V, Vigano A. Longitudinal changes of bone mineral density and metabolism in antiretroviral-treated human immunodeficiency virus-infected children. J Clin Endocrinol Metab. 2004;89(1):24–8.PubMedGoogle Scholar
  53. 53.
    Macdonald HM, Chu J, Nettlefold L, et al. Bone geometry and strength are adapted to muscle force in children and adolescents perinatally infected with HIV. J Musculoskelet Neuronal Interact. 2013;13(1):53–65.PubMedGoogle Scholar
  54. 54.
    Heaney RP, Abrams S, Dawson-Hughes B, et al. Peak bone mass. Osteoporos Int. 2000;11(12):985–1009.PubMedGoogle Scholar
  55. 55.
    Yin MT, Lund E, Shah J, et al. Lower peak bone mass and abnormal trabecular and cortical microarchitecture in young men infected with HIV early in life. AIDS (London, England). 2013;28(3):345–53. doi: 10.1097/qad.0000000000000070.Google Scholar
  56. 56.
    Gaughan DM, Mofenson LM, Hughes MD, Seage III GR, Ciupak GL, Oleske JM. Osteonecrosis of the hip (Legg-Calve-Perthes disease) in human immunodeficiency virus-infected children. Pediatrics. 2002;109(5):E74–4.PubMedGoogle Scholar
  57. 57.
    Siberry GK, Li H, Jacobson D. Fracture risk by HIV infection status in perinatally HIV-exposed children. AIDS Res Hum Retroviruses. 2012;28(3):247–50. doi: 10.1089/aid.2011.0064.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14(10):843–7. doi: 10.1007/s00198-003-1454-8.PubMedGoogle Scholar
  59. 59.
    Ofotokun I, McIntosh E, Weitzmann MN. HIV: inflammation and bone. Curr HIV/AIDS Rep. 2012;9(1):16–25. doi: 10.1007/s11904-011-0099-z.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Walker Harris V, Brown TT. Bone loss in the HIV-infected patient: evidence, clinical implications, and treatment strategies. J Infect Dis. 2012;205 Suppl 3:S391–8. doi: 10.1093/infdis/jis199.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Marchetti G, Tincati C, Silvestri G. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev. 2013;26(1):2–18. doi: 10.1128/cmr.00050-12.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Mora S, Zamproni I, Cafarelli L, et al. Alterations in circulating osteoimmune factors may be responsible for high bone resorption rate in HIV-infected children and adolescents. AIDS (London, England). 2007;21(9):1129–35. doi: 10.1097/QAD.0b013e32810c8ccf.Google Scholar
  63. 63.
    Prince CW, Butler WT. 1,25-Dihydroxyvitamin D3 regulates the biosynthesis of osteopontin, a bone-derived cell attachment protein, in clonal osteoblast-like osteosarcoma cells. Coll Relat Res. 1987;7(4):305–13.PubMedGoogle Scholar
  64. 64.
    Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597–602.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Looker AC. Body fat and vitamin D status in black versus white women. J Clin Endocrinol Metab. 2005;90(2):635–40. doi: 10.1210/jc.2004-1765.PubMedGoogle Scholar
  66. 66.
    Nesby-O’Dell S, Scanlon KS, Cogswell ME, et al. Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third National Health and Nutrition Examination Survey, 1988-1994. Am J Clin Nutr. 2002;76(1):187–92.PubMedGoogle Scholar
  67. 67.
    Harris SS, Soteriades E, Coolidge JA, Mudgal S, Dawson-Hughes B. Vitamin D insufficiency and hyperparathyroidism in a low income, multiracial, elderly population. J Clin Endocrinol Metab. 2000;85(11):4125–30.PubMedGoogle Scholar
  68. 68.
    Allavena C, Delpierre C, Cuzin L, et al. High frequency of vitamin D deficiency in HIV-infected patients: effects of HIV-related factors and antiretroviral drugs. J Antimicrob Chemother. 2012;67(9):2222–30. doi: 10.1093/jac/dks176.PubMedGoogle Scholar
  69. 69.
    Kwan CK, Eckhardt B, Baghdadi J, Aberg JA. Hyperparathyroidism and complications associated with vitamin D deficiency in HIV-infected adults in New York City, New York. AIDS Res Hum Retroviruses. 2012;28(9):1025–32. doi: 10.1089/aid.2011.0325.PubMedGoogle Scholar
  70. 70.
    Dao CN, Patel P, Overton ET, et al. Low vitamin D among HIV-infected adults: prevalence of and risk factors for low vitamin D Levels in a cohort of HIV-infected adults and comparison to prevalence among adults in the US general population. Clin Infect Dis. 2011;52(3):396–405. doi: 10.1093/cid/ciq158.PubMedGoogle Scholar
  71. 71.
    Adeyemi OM, Agniel D, French AL, et al. Vitamin D deficiency in HIV-infected and HIV-uninfected women in the United States. J Acquir Immune Defic Syndr. 2011;57(3):197–204. doi: 10.1097/QAI.0b013e31821ae418.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Viard JP, Souberbielle JC, Kirk O, et al. Vitamin D and clinical disease progression in HIV infection: results from the EuroSIDA study. AIDS (London, England). 2011;25(10):1305–15. doi: 10.1097/QAD.0b013e328347f6f7.Google Scholar
  73. 73.
    Van Den Bout-Van Den Beukel CJ, Fievez L, Michels M, et al. Vitamin D deficiency among HIV type 1-infected individuals in the Netherlands: effects of antiretroviral therapy. AIDS Res Hum Retroviruses. 2008;24(11):1375–82.Google Scholar
  74. 74.
    Mueller NJ, Fux CA, Ledergerber B, et al. High prevalence of severe vitamin D deficiency in combined antiretroviral therapy-naive and successfully treated Swiss HIV patients. AIDS. 2010;24(8):1127–34.PubMedGoogle Scholar
  75. 75.
    Mehta S, Giovannucci E, Mugusi FM, et al. Vitamin D status of HIV-infected women and its association with HIV disease progression, anemia, and mortality. PLoS One. 2010;5(1):e8770. doi: 10.1371/journal.pone.0008770.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Stein EM, Yin MT, McMahon DJ, et al. Vitamin D deficiency in HIV-infected postmenopausal Hispanic and African-American women. Osteoporos Int. 2011;22(2):477–87. doi: 10.1007/s00198-010-1299-x.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Stephensen CB, Marquis GS, Kruzich LA, Douglas SD, Aldrovandi GM, Wilson CM. Vitamin D status in adolescents and young adults with HIV infection. Am J Clin Nutr. 2006;83(5):1135–41.PubMedGoogle Scholar
  78. 78.
    Welz T, Childs K, Ibrahim F, et al. Efavirenz is associated with severe vitamin D deficiency and increased alkaline phosphatase. AIDS (London, England). 2010;24(12):1923–8. doi: 10.1097/QAD.0b013e32833c3281.Google Scholar
  79. 79.
    Arpadi SM, McMahon D, Abrams EJ, et al. Effect of bimonthly supplementation with oral cholecalciferol on serum 25-hydroxyvitamin D concentrations in HIV-infected children and adolescents. Pediatrics. 2009;123(1):e121–6. doi: 10.1542/peds.2008-0176.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Ross AC, Judd S, Kumari M, et al. Vitamin D is linked to carotid intima-media thickness and immune reconstitution in HIV-positive individuals. Antivir Ther. 2011;16(4):555–63. doi: 10.3851/imp1784.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Hay JE. Bone disease in cholestatic liver disease. Gastroenterology. 1995;108(1):276–83.PubMedGoogle Scholar
  82. 82.
    Gallego-Rojo FJ, Gonzalez-Calvin JL, Muñoz-Torres M, Mundi JL, Fernandez-Perez R, Rodrigo-Moreno D. Bone mineral density, serum insulin-like growth factor I, and bone turnover markers in viral cirrhosis. Hepatology. 1998;28(3):695–9.PubMedGoogle Scholar
  83. 83.
    El-Maouche D, Mehta SH, Sutcliffe C, et al. Controlled HIV viral replication, not liver disease severity associated with low bone mineral density in HIV/HCV co-infection. J Hepatol. 2011;55(4):770–6. doi: 10.1016/j.jhep.2011.01.035.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Gonzalez-Calvin JL, Gallego-Rojo F, Fernandez-Perez R, Casado-Caballero F, Ruiz-Escolano E, Olivares EG. Osteoporosis, mineral metabolism, and serum soluble tumor necrosis factor receptor p55 in viral cirrhosis.J Clin Endocrinol Metab. 2004;89(9):4325–30. doi: 10.1210/jc.2004-0077.PubMedGoogle Scholar
  85. 85.
    Guardiola J, Xiol X, Sallie R, et al. Influence of the vitamin D receptor gene polymorphism on bone loss in men after liver transplantation. Ann Intern Med. 1999;131(10):752–5.PubMedGoogle Scholar
  86. 86.
    Kim JH, Gandhi V, Psevdos Jr G, Espinoza F, Park J, Sharp V. Evaluation of vitamin D levels among HIV-infected patients in New York City. AIDS Res Hum Retroviruses. 2012;28(3):235–41. doi: 10.1089/aid.2011.0040.PubMedGoogle Scholar
  87. 87.
    Wasserman P, Rubin DS. Highly prevalent vitamin D deficiency and insufficiency in an urban cohort of HIV-infected men under care. AIDS Patient Care STDS. 2010;24(4):223–7. doi: 10.1089/apc.2009.0241.PubMedGoogle Scholar
  88. 88.
    Herzmann C, Arasteh K. Efavirenz-induced osteomalacia. AIDS (London, England). 2009;23(2):274–5. doi: 10.1097/QAD.0b013e32831f4685.Google Scholar
  89. 89.
    Gyllensten K, Josephson F, Lidman K, Saaf M. Severe vitamin D deficiency diagnosed after introduction of antiretroviral therapy including efavirenz in a patient living at latitude 59 degrees N. AIDS (London, England). 2006;20(14):1906–7. doi: 10.1097/01.aids.0000244216.08327.39.Google Scholar
  90. 90.
    Brown TT, McComsey GA. Association between initiation of antiretroviral therapy with efavirenz and decreases in 25-hydroxyvitamin D. Antivir Ther. 2010;15(3):425–9. doi: 10.3851/imp1502.PubMedGoogle Scholar
  91. 91.
    Fox J, Peters B, Prakash M, Arribas J, Hill A, Moecklinghoff C. Improvement in vitamin D deficiency following antiretroviral regime change: results from the MONET trial. AIDS Res Hum Retroviruses. 2011;27(1):29–34. doi: 10.1089/aid.2010.0081.PubMedGoogle Scholar
  92. 92.
    Valsamis HA, Arora SK, Labban B, McFarlane SI. Antiepileptic drugs and bone metabolism. Nutr Metabol. 2006;3:36. doi: 10.1186/1743-7075-3-36.Google Scholar
  93. 93.
    Pascussi JM, Robert A, Nguyen M, et al. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J Clin Invest. 2005;115(1):177–86. doi: 10.1172/jci21867.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Cozzolino M, Vidal M, Arcidiacono MV, Tebas P, Yarasheski KE, Dusso AS. HIV-protease inhibitors impair vitamin D bioactivation to 1,25-dihydroxyvitamin D. AIDS (London, England). 2003;17(4):513–20. doi: 10.1097/01.aids.0000050817.06065.f8.Google Scholar
  95. 95.
    Ikezoe T, Bandobashi K, Yang Y, et al. HIV-1 protease inhibitor ritonavir potentiates the effect of 1,25-dihydroxyvitamin D3 to induce growth arrest and differentiation of human myeloid leukemia cells via down-regulation of CYP24. Leuk Res. 2006;30(8):1005–11. doi: 10.1016/j.leukres.2005.12.008.PubMedGoogle Scholar
  96. 96.
    Pocaterra D, Carenzi L, Ricci E, et al. Secondary hyperparathyroidism in HIV patients: is there any responsibility of highly active antiretroviral therapy? AIDS (London, England). 2011;25(11):1430–3. doi: 10.1097/QAD.0b013e328349060e.Google Scholar
  97. 97.
    Masia M, Padilla S, Robledano C, Lopez N, Ramos JM, Gutierrez F. Early changes in parathyroid hormone concentrations in HIV-infected patients initiating antiretroviral therapy with tenofovir. AIDS Res Hum Retroviruses. 2012;28(3):242–6. doi: 10.1089/aid.2011.0052.PubMedGoogle Scholar
  98. 98.
    Havens PL, Kiser JJ, Stephensen CB, et al. Association of higher plasma vitamin d binding protein and lower free calcitriol levels with tenofovir disoproxil fumarate use and plasma and intracellular tenofovir pharmacokinetics: cause of a functional vitamin d deficiency? Antimicrob Agents Chemother. 2013;57(11):5619–28. doi: 10.1128/aac.01096-13.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Yin MT, Lu D, Cremers S, et al. Short-term bone loss in HIV-infected premenopausal women. J Acquir Immune Defic Syndr. 2010;53(2):202–8. doi: 10.1097/QAI.0b013e3181bf6471.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Dolan SE, Kanter JR, Grinspoon S. Longitudinal analysis of bone density in human immunodeficiency virus-infected women. J Clin Endocrinol Metab. 2006;91(8):2938–45. doi: 10.1210/jc.2006-0127.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Hamill MM, Ward KA, Pettifor JM, Norris SA, Prentice A. Bone mass, body composition and vitamin D status of ARV-naive, urban, black South African women with HIV infection, stratified by CD count. Osteoporos Int. 2013;24(11):2855–61. doi: 10.1007/s00198-013-2373-y.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Jacobson DL, Spiegelman D, Knox TK, Wilson IB. Evolution and predictors of change in total bone mineral density over time in HIV-infected men and women in the nutrition for healthy living study. J Acquir Immune Defic Syndr. 2008;49(3):298–308. doi: 10.1097/QAI.0b013e3181893e8e.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Bolland MJ, Grey AB, Horne AM, et al. Annual zoledronate increases bone density in highly active antiretroviral therapy-treated human immunodeficiency virus-infected men: a randomized controlled trial. J Clin Endocrinol Metab. 2007;92(4):1283–8. doi: 10.1210/jc.2006-2216.PubMedGoogle Scholar
  104. 104.
    McComsey GA, Kendall MA, Tebas P, et al. Alendronate with calcium and vitamin D supplementation is safe and effective for the treatment of decreased bone mineral density in HIV. AIDS (London, England). 2007;21(18):2473–82. doi: 10.1097/QAD.0b013e3282ef961d.Google Scholar
  105. 105.
    Mondy K, Powderly WG, Claxton SA, et al. Alendronate, vitamin D, and calcium for the treatment of osteopenia/osteoporosis associated with HIV infection. J Acquir Immune Defic Syndr. 2005;38(4):426–31.PubMedGoogle Scholar
  106. 106.
    Longenecker CT, Hileman CO, Carman TL, et al. Vitamin D supplementation and endothelial function in vitamin D deficient HIV-infected patients: a randomized placebo-controlled trial. Antivir Ther. 2012;17(4):613–21. doi: 10.3851/imp1983.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Havens PL, Stephensen CB, Hazra R, et al. Vitamin D3 decreases parathyroid hormone in HIV-infected youth being treated with tenofovir: a randomized, placebo-controlled trial. Clin Infect Dis. 2012;54(7):1013–25. doi: 10.1093/cid/cir968.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30. doi: 10.1210/jc.2011-0385.PubMedGoogle Scholar
  109. 109.
    European AIDS Clinical Society. Internet: http://www.eacsociety.org/Portals/0/Guidelines_Online_131014.pdf.
  110. 110.
    Amiel C, Ostertag A, Slama L, et al. BMD is reduced in HIV-infected men irrespective of treatment. J Bone Miner Res. 2004;19(3):402–9. doi: 10.1359/JBMR.0301246.Google Scholar
  111. 111.
    Pontrelli G, Cotugno N, Amodio D, et al. Renal function in HIV-infected children and adolescents treated with tenofovir disoproxil fumarate and protease inhibitors. BMC Infect Dis. 2012;12:18. doi: 10.1186/1471-2334-12-18.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Henderson RA, Saavedra JM, Perman JA, Hutton N, Livingston RA, Yolken RH. Effect of enteral tube feeding on growth of children with symptomatic human immunodeficiency virus infection. J Pediatr Gastroenterol Nutr. 1994;18(4):429–34.PubMedGoogle Scholar
  113. 113.
    Shiau S, Arpadi S, Strehlau R, et al. Initiation of antiretroviral therapy before 6 months of age is associated with faster growth recovery in South African children perinatally infected with human immunodeficiency virus. J Pediatr. 2013;162(6):1138–45. doi: 10.1016/j.jpeds.2012.11.025. 45 e1–2.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Nachman SA, Lindsey JC, Pelton S, et al. Growth in human immunodeficiency virus-infected children receiving ritonavir-containing antiretroviral therapy. Arch Pediatr Adolesc Med. 2002;156(5):497–503.PubMedGoogle Scholar
  115. 115.
    Miller TL, Mawn BE, Orav EJ, et al. The effect of protease inhibitor therapy on growth and body composition in human immunodeficiency virus type 1-infected children. Pediatrics. 2001;107(5):E77.PubMedGoogle Scholar
  116. 116.
    Verweel G, van Rossum AM, Hartwig NG, Wolfs TF, Scherpbier HJ, de Groot R. Treatment with highly active antiretroviral therapy in human immunodeficiency virus type 1-infected children is associated with a sustained effect on growth. Pediatrics. 2002;109(2):E25.PubMedGoogle Scholar
  117. 117.
    Coutsoudis A, Bobat RA, Coovadia HM, Kuhn L, Tsai WY, Stein ZA. The effects of vitamin A supplementation on the morbidity of children born to HIV-infected women. Am J Public Health. 1995;85(8 Pt 1):1076–81.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Bobat R, Coovadia H, Stephen C, et al. Safety and efficacy of zinc supplementation for children with HIV-1 infection in South Africa: a randomised double-blind placebo-controlled trial. Lancet. 2005;366(9500):1862–7. doi: 10.1016/s0140-6736(05)67756-2.PubMedGoogle Scholar
  119. 119.
    Fawzi WW, Mbise RL, Hertzmark E, et al. A randomized trial of vitamin A supplements in relation to mortality among human immunodeficiency virus-infected and uninfected children in Tanzania. Pediatr Infect Dis J. 1999;18(2):127–33.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Stephanie Shiau
    • 1
  • Stephen M. Arpadi
    • 2
    Email author
  • Michael T. Yin
    • 3
  1. 1.Department of EpidemiologyGertrude H. Sergievsky Center, College of Physicians and Surgeons, Mailman School of Public Health, Columbia UniversityNew YorkUSA
  2. 2.Department of EpidemiologyGertrude H. Sergievsky Center and Department of Pediatrics, College of Physicians and Surgeons, Mailman School of Public Health, Columbia UniversityNew YorkUSA
  3. 3.Division of Infectious Diseases, Department of MedicineCollege of Physicians and Surgeons, Columbia UniversityNew YorkUSA

Personalised recommendations