Skip to main content

Fat and Bone

  • Chapter
  • First Online:
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

  • 2990 Accesses

Abstract

Nutrients are in the cornerstone position for the prevention of metabolic diseases such as diabetes mellitus and are gaining increasing relevance on the approach of cardiovascular disturbances. Conversely, only recently obesity started to be considered a threat for bone. As a consequence great interest emerged in the study of the effects of diet on bone physiology and pathology. The chapter focuses on the direct and indirect influence of fat on bone mass development and maintenance. The mechanisms of fat action on bone are discussed after a brief review of systemic effect of high-fat diet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142(2):296–308.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142(2):309–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Kawai M, de Paula FJ, Rosen CJ. New insights into osteoporosis: the bone-fat connection. J Intern Med. 2012;272(4):317–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Ioffe E, Moon B, Connolly E, Friedman JM. Abnormal regulation of the leptin gene in the pathogenesis of obesity. Proc Natl Acad Sci U S A. 1998;95(20):11852–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Harwood Jr HJ. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology. 2012;63(1):57–75.

    CAS  PubMed  Google Scholar 

  6. Cohen A, Dempster DW, Recker RR, Lappe JM, Zhou H, Zwahlen A, et al. Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: a transiliac bone biopsy study. J Clin Endocrinol Metab. 2013;98(6):2562–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121(6):2111–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Menendez JA. Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives. Biochim Biophys Acta. 2010;1801(3):381–91.

    CAS  PubMed  Google Scholar 

  9. Reid IR. Fat and bone. Arch Biochem Biophys. 2010;503(1):20–7.

    CAS  PubMed  Google Scholar 

  10. Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J. Obesity and fractures in postmenopausal women. J Bone Miner Res. 2010;25(2):292–7.

    PubMed  Google Scholar 

  11. Prieto-Alhambra D, Premaor MO, Fina Aviles F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C, et al. The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res. 2012;27(2):294–300.

    PubMed  Google Scholar 

  12. Dawber TR, Moore FE, Mann GV. Coronary heart disease in the Framingham study. Am J Public Health Nations Health. 1957;47(4 Pt 2):4–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Buse JB, Ginsberg HN, Bakris GL, Clark NG, Costa F, Eckel R, et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care. 2007;30(1):162–72.

    CAS  PubMed  Google Scholar 

  14. Connor H, Annan F, Bunn E, Frost G, McGough N, Sarwar T, et al. The implementation of nutritional advice for people with diabetes. Diabet Med. 2003;20(10):786–807.

    CAS  PubMed  Google Scholar 

  15. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am. 2004;88(4):787–835.

    CAS  PubMed  Google Scholar 

  16. Speakman JR. Evolutionary perspectives on the obesity epidemic: adaptive, maladaptive, and neutral viewpoints. Annu Rev Nutr. 2013;33:289–317.

    CAS  PubMed  Google Scholar 

  17. Prentice AM, Hennig BJ, Fulford AJ. Evolutionary origins of the obesity epidemic: natural selection of thrifty genes or genetic drift following predation release? Int J Obes (Lond). 2008;32(11):1607–10.

    CAS  Google Scholar 

  18. Fernandez-Real JM, Ricart W. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev. 2003;24(3):278–301.

    CAS  PubMed  Google Scholar 

  19. Da Silva AS, Pauli JR, Ropelle ER, Oliveira AG, Cintra DE, De Souza CT, et al. Exercise intensity, inflammatory signaling, and insulin resistance in obese rats. Med Sci Sports Exerc. 2010;42(12):2180–8.

    PubMed  Google Scholar 

  20. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Anderson EK, Gutierrez DA, Kennedy A, Hasty AH. Weight cycling increases T-cell accumulation in adipose tissue and impairs systemic glucose tolerance. Diabetes. 2013;62(9):3180–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Xue P, Gao P, Li Y. The association between metabolic syndrome and bone mineral density: a meta-analysis. Endocrine. 2012;42(3):546–54.

    CAS  PubMed  Google Scholar 

  23. Paula FJ, Rosen CJ. Obesity, diabetes mellitus and last but not least, osteoporosis. Arq Bras Endocrinol Metabol. 2010;54(2):150–7.

    PubMed  Google Scholar 

  24. Kushner RF. Body weight and mortality. Nutr Rev. 1993;51(5):127–36.

    CAS  PubMed  Google Scholar 

  25. Ringback Weitoft G, Eliasson M, Rosen M. Underweight, overweight and obesity as risk factors for mortality and hospitalization. Scand J Public Health. 2008;36(2):169–76.

    PubMed  Google Scholar 

  26. Willett WC. Dietary fats and coronary heart disease. J Intern Med. 2012;272(1):13–24.

    CAS  PubMed  Google Scholar 

  27. Hu FB, Stampfer MJ, Manson JE, Rimm E, Colditz GA, Rosner BA, et al. Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med. 1997;337(21):1491–9.

    CAS  PubMed  Google Scholar 

  28. Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest. 2011;121(6):2126–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Carvalho BM, Guadagnini D, Tsukumo DM, Schenka AA, Latuf-Filho P, Vassallo J, et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55(10):2823–34.

    CAS  PubMed  Google Scholar 

  31. de Wit N, Derrien M, Bosch-Vermeulen H, Oosterink E, Keshtkar S, Duval C, et al. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol Gastrointest Liver Physiol. 2012;303(5):G589–99.

    PubMed  Google Scholar 

  32. Rohan TE, Negassa A, Caan B, Chlebowski RT, Curb JD, Ginsberg M, et al. Low-fat dietary pattern and risk of benign proliferative breast disease: a randomized, controlled dietary modification trial. Cancer Prevent Res. 2008;1(4):275–84.

    CAS  Google Scholar 

  33. Beresford SA, Johnson KC, Ritenbaugh C, Lasser NL, Snetselaar LG, Black HR, et al. Low-fat dietary pattern and risk of colorectal cancer: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA. 2006;295(6):643–54.

    CAS  PubMed  Google Scholar 

  34. Richman EL, Kenfield SA, Stampfer MJ, Giovannucci EL, Chan JM. Egg, red meat, and poultry intake and risk of lethal prostate cancer in the prostate-specific antigen-era: incidence and survival. Cancer Prevent Res. 2011;4(12):2110–21.

    CAS  Google Scholar 

  35. Lopez-Miranda J, Perez-Jimenez F, Ros E, De Caterina R, Badimon L, Covas MI, et al. Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaen and Cordoba (Spain) 2008. Nutr Metab Cardiovasc Dis. 2010;20(4):284–94.

    CAS  PubMed  Google Scholar 

  36. Kelly OJ, Gilman JC, Kim Y, Ilich JZ. Long-chain polyunsaturated fatty acids may mutually benefit both obesity and osteoporosis. Nutr Res. 2013;33(7):521–33.

    CAS  PubMed  Google Scholar 

  37. Mangano KM, Sahni S, Kerstetter JE, Kenny AM, Hannan MT. Polyunsaturated fatty acids and their relation with bone and muscle health in adults. Curr Osteoporosis Rep. 2013;11(3):203–12.

    Google Scholar 

  38. Fotuhi M, Mohassel P, Yaffe K. Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. Nat Clin Pract Neurol. 2009;5(3):140–52.

    CAS  PubMed  Google Scholar 

  39. Nazem TG, Ackerman KE. The female athlete triad. Sports Health. 2012;4(4):302–11.

    PubMed Central  PubMed  Google Scholar 

  40. Barrack MT, Rauh MJ, Nichols JF. Prevalence of and traits associated with low BMD among female adolescent runners. Med Sci Sports Exerc. 2008;40(12):2015–21.

    PubMed  Google Scholar 

  41. Bolland MJ, Grey AB, Gamble GD, Reid IR. CLINICAL Review #: low body weight mediates the relationship between HIV infection and low bone mineral density: a meta-analysis. J Clin Endocrinol Metab. 2007;92(12):4522–8.

    CAS  PubMed  Google Scholar 

  42. Pereira FA, de Castro JA, dos Santos JE, Foss MC, Paula FJ. Impact of marked weight loss induced by bariatric surgery on bone mineral density and remodeling. Braz J Med Biol Res. 2007;40(4):509–17.

    CAS  PubMed  Google Scholar 

  43. Goulding A, Grant AM, Williams SM. Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res. 2005;20(12):2090–6.

    PubMed  Google Scholar 

  44. Dimitri P, Wales JK, Bishop N. Fat and bone in children: differential effects of obesity on bone size and mass according to fracture history. J Bone Miner Res. 2010;25(3):527–36.

    PubMed  Google Scholar 

  45. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001;139(4):509–15.

    CAS  PubMed  Google Scholar 

  46. Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V. Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res. 2001;16(7):1337–42.

    CAS  PubMed  Google Scholar 

  47. Manias K, McCabe D, Bishop N. Fractures and recurrent fractures in children; varying effects of environmental factors as well as bone size and mass. Bone. 2006;39(3):652–7.

    PubMed  Google Scholar 

  48. Clark EM, Ness AR, Tobias JH. Adipose tissue stimulates bone growth in prepubertal children. J Clin Endocrinol Metab. 2006;91(7):2534–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, et al. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab. 2010;95(3):1247–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Tsatsoulis A, Mantzaris MD, Bellou S, Andrikoula M. Insulin resistance: an adaptive mechanism becomes maladaptive in the current environment – an evolutionary perspective. Metab Clin Exp. 2013;62(5):622–33.

    CAS  PubMed  Google Scholar 

  51. Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract. 2006;2(1):35–43.

    CAS  Google Scholar 

  52. Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, et al. Marrow fat and bone – new perspectives. J Clin Endocrinol Metab. 2013;98(3):935–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, et al. Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab. 2009;94(6):2129–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, et al. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res. 2010;25(9):2078–88.

    PubMed Central  PubMed  Google Scholar 

  55. Hsu YH, Venners SA, Terwedow HA, Feng Y, Niu T, Li Z, et al. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr. 2006;83(1):146–54.

    CAS  PubMed  Google Scholar 

  56. Orozco P. Atherogenic lipid profile and elevated lipoprotein (a) are associated with lower bone mineral density in early postmenopausal overweight women. Eur J Epidemiol. 2004;19(12):1105–12.

    CAS  PubMed  Google Scholar 

  57. Cui LH, Shin MH, Chung EK, Lee YH, Kweon SS, Park KS, et al. Association between bone mineral densities and serum lipid profiles of pre- and post-menopausal rural women in South Korea. Osteoporos Int. 2005;16(12):1975–81.

    CAS  PubMed  Google Scholar 

  58. Slade JM, Coe LM, Meyer RA, McCabe LR. Human bone marrow adiposity is linked with serum lipid levels not T1-diabetes. J Diabetes Complications. 2012;26(1):1–9.

    PubMed  Google Scholar 

  59. Cutrim DM, Pereira FA, de Paula FJ, Foss MC. Lack of relationship between glycemic control and bone mineral density in type 2 diabetes mellitus. Braz J Med Biol Res. 2007;40(2):221–7.

    CAS  PubMed  Google Scholar 

  60. Toth M, Grossman A. Glucocorticoid-induced osteoporosis: lessons from Cushing's syndrome. Clin Endocrinol (Oxf). 2013;79(1):1–11.

    CAS  Google Scholar 

  61. Baliram R, Sun L, Cao J, Li J, Latif R, Huber AK, et al. Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. J Clin Invest. 2012;122(10):3737–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Biondi B. Natural history, diagnosis and management of subclinical thyroid dysfunction. Best Pract Res. 2012;26(4):431–46.

    CAS  Google Scholar 

  63. Lanna CM, Paula FJ, Montenegro Jr RM, Moreira AC, Foss MC. Parathyroid hormone secretion in chronic human endogenous hypercortisolism. Braz J Med Biol Res. 2002;35(2):229–36.

    CAS  PubMed  Google Scholar 

  64. de Paula FJ, Rosen CJ. Vitamin D safety and requirements. Arch Biochem Biophys. 2012;523(1):64–72.

    PubMed Central  PubMed  Google Scholar 

  65. Narvaez CJ, Matthews D, Broun E, Chan M, Welsh J. Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue. Endocrinology. 2009;150(2):651–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Wong KE, Szeto FL, Zhang W, Ye H, Kong J, Zhang Z, et al. Involvement of the vitamin D receptor in energy metabolism: regulation of uncoupling proteins. Am J Physiol. 2009;296(4):E820–8.

    CAS  Google Scholar 

  67. Goto T, Kim YI, Takahashi N, Kawada T. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors. Mol Nutr Food Res. 2013;57(1):20–33.

    CAS  PubMed  Google Scholar 

  68. Kawada T, Goto T, Hirai S, Kang MS, Uemura T, Yu R, et al. Dietary regulation of nuclear receptors in obesity-related metabolic syndrome. Asia Pac J Clin Nutr. 2008;17 Suppl 1:126–30.

    CAS  PubMed  Google Scholar 

  69. Sharma AM, Staels B. Review: peroxisome proliferator-activated receptor gamma and adipose tissue–understanding obesity-related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab. 2007;92(2):386–95.

    CAS  PubMed  Google Scholar 

  70. Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem. 1997;272(30):18779–89.

    CAS  PubMed  Google Scholar 

  71. Shockley KR, Lazarenko OP, Czernik PJ, Rosen CJ, Churchill GA, Lecka-Czernik B. PPARgamma2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. J Cell Biochem. 2009;106(2):232–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994;8(10):1224–34.

    CAS  PubMed  Google Scholar 

  73. Kawai M, Rosen CJ. PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis. Nat Rev. 2010;6(11):629–36.

    CAS  Google Scholar 

  74. Sadie-Van Gijsen H, Hough FS, Ferris WF. Determinants of bone marrow adiposity: the modulation of peroxisome proliferator-activated receptor-gamma2 activity as a central mechanism. Bone. 2013;56(2):255–65.

    CAS  PubMed  Google Scholar 

  75. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell. 1995;83(5):803–12.

    CAS  PubMed  Google Scholar 

  76. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19(5):557–66.

    CAS  PubMed  Google Scholar 

  77. Balakumar P, Rose M, Ganti SS, Krishan P, Singh M. PPAR dual agonists: are they opening Pandora's Box? Pharmacol Res. 2007;56(2):91–8.

    CAS  PubMed  Google Scholar 

  78. Lehrke M, Pascual G, Glass CK, Lazar MA. Gaining weight: the Keystone Symposium on PPAR and LXR. Genes Dev. 2005;19(15):1737–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Lehrke M, Lazar MA. The many faces of PPARgamma. Cell. 2005;123(6):993–9.

    CAS  PubMed  Google Scholar 

  80. Ahmed W, Ziouzenkova O, Brown J, Devchand P, Francis S, Kadakia M, et al. PPARs and their metabolic modulation: new mechanisms for transcriptional regulation? J Intern Med. 2007;262(2):184–98.

    CAS  PubMed  Google Scholar 

  81. Botolin S, McCabe LR. Inhibition of PPARgamma prevents type I diabetic bone marrow adiposity but not bone loss. J Cell Physiol. 2006;209(3):967–76.

    CAS  PubMed  Google Scholar 

  82. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460(7252):259–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Schwartz AV, Sigurdsson S, Hue TF, Lang TF, Harris TB, Rosen CJ, et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab. 2013;98(6):2294–300.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Georgiou KR, Hui SK, Xian CJ. Regulatory pathways associated with bone loss and bone marrow adiposity caused by aging, chemotherapy, glucocorticoid therapy and radiotherapy. Am J Stem Cells. 2012;1(3):205–24.

    PubMed Central  PubMed  Google Scholar 

  85. Qin W, Bauman WA, Cardozo C. Bone and muscle loss after spinal cord injury: organ interactions. Ann N Y Acad Sci. 2010;1211:66–84.

    PubMed  Google Scholar 

  86. Shen W, Chen J, Gantz M, Punyanitya M, Heymsfield SB, Gallagher D, et al. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older adults. Eur J Clin Nutr. 2012;66(9):983–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell. 2004;3(6):379–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology. 2007;148(6):2669–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Mody N, Parhami F, Sarafian TA, Demer LL. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med. 2001;31(4):509–19.

    CAS  PubMed  Google Scholar 

  90. Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, et al. Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature. 1999;400(6742):378–82.

    CAS  PubMed  Google Scholar 

  91. Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL. Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem. 2009;284(40):27438–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Kim WK, Meliton V, Amantea CM, Hahn TJ, Parhami F. 20(S)-hydroxycholesterol inhibits PPARgamma expression and adipogenic differentiation of bone marrow stromal cells through a hedgehog-dependent mechanism. J Bone Miner Res. 2007;22(11):1711–9.

    CAS  PubMed  Google Scholar 

  93. Johnson JS, Meliton V, Kim WK, Lee KB, Wang JC, Nguyen K, et al. Novel oxysterols have pro-osteogenic and anti-adipogenic effects in vitro and induce spinal fusion in vivo. J Cell Biochem. 2011;112(6):1673–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Kim WK, Meliton V, Bourquard N, Hahn TJ, Parhami F. Hedgehog signaling and osteogenic differentiation in multipotent bone marrow stromal cells are inhibited by oxidative stress. J Cell Biochem. 2010;111(5):1199–209.

    CAS  PubMed  Google Scholar 

  95. Santiago-Mora R, Casado-Diaz A, De Castro MD, Quesada-Gomez JM. Oleuropein enhances osteoblastogenesis and inhibits adipogenesis: the effect on differentiation in stem cells derived from bone marrow. Osteoporos Int. 2011;22(2):675–84.

    CAS  PubMed  Google Scholar 

  96. Bielohuby M, Matsuura M, Herbach N, Kienzle E, Slawik M, Hoeflich A, et al. Short-term exposure to low-carbohydrate, high-fat diets induces low bone mineral density and reduces bone formation in rats. J Bone Miner Res. 2010;25(2):275–84.

    CAS  PubMed  Google Scholar 

  97. Hoffman RM, Lawrence LA, Kronfeld DS, Cooper WL, Sklan DJ, Dascanio JJ, et al. Dietary carbohydrates and fat influence radiographic bone mineral content of growing foals. J Anim Sci. 1999;77(12):3330–8.

    CAS  PubMed  Google Scholar 

  98. Corwin RL, Hartman TJ, Maczuga SA, Graubard BI. Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III. J Nutr. 2006;136(1):159–65.

    CAS  PubMed  Google Scholar 

  99. Rousseau JH, Kleppinger A, Kenny AM. Self-reported dietary intake of omega-3 fatty acids and association with bone and lower extremity function. J Am Geriatr Soc. 2009;57(10):1781–8.

    PubMed  Google Scholar 

  100. Jarvinen R, Tuppurainen M, Erkkila AT, Penttinen P, Karkkainen M, Salovaara K, et al. Associations of dietary polyunsaturated fatty acids with bone mineral density in elderly women. Eur J Clin Nutr. 2012;66(4):496–503.

    CAS  PubMed  Google Scholar 

  101. Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL. Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr. 2011;93(5):1142–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Virtanen JK, Mozaffarian D, Cauley JA, Mukamal KJ, Robbins J, Siscovick DS. Fish consumption, bone mineral density, and risk of hip fracture among older adults: the cardiovascular health study. J Bone Miner Res. 2010;25(9):1972–9.

    PubMed Central  PubMed  Google Scholar 

  103. Lappe J, Kunz I, Bendik I, Prudence K, Weber P, Recker R, et al. Effect of a combination of genistein, polyunsaturated fatty acids and vitamins D3 and K1 on bone mineral density in postmenopausal women: a randomized, placebo-controlled, double-blind pilot study. Eur J Nutr. 2013;52(1):203–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Wacker M, Holick MF. Vitamin D – effects on skeletal and extraskeletal health and the need for supplementation. Nutrients. 2013;5(1):111–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Lips P, van Schoor NM. The effect of vitamin D on bone and osteoporosis. Best Pract Res. 2011;25(4):585–91.

    CAS  Google Scholar 

  106. Gajic-Veljanoski O, Bayoumi AM, Tomlinson G, Khan K, Cheung AM. Vitamin K supplementation for the primary prevention of osteoporotic fractures: is it cost-effective and is future research warranted? Osteoporos Int. 2012;23(11):2681–92.

    CAS  PubMed  Google Scholar 

  107. Ahmadieh H, Arabi A. Vitamins and bone health: beyond calcium and vitamin D. Nutr Rev. 2011;69(10):584–98.

    PubMed  Google Scholar 

  108. Vega D, Maalouf NM, Sakhaee K. CLINICAL review #: the role of receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/osteoprotegerin: clinical implications. J Clin Endocrinol Metab. 2007;92(12):4514–21.

    CAS  PubMed  Google Scholar 

  109. Grigorie D, Neacsu E, Marinescu M, Popa O. Circulating osteoprotegerin and leptin levels in postmenopausal women with and without osteoporosis. Rev Roum Med Intern. 2003;41(4):409–15.

    CAS  Google Scholar 

  110. Jorgensen HL, Kusk P, Madsen B, Fenger M, Lauritzen JB. Serum osteoprotegerin (OPG) and the A163G polymorphism in the OPG promoter region are related to peripheral measures of bone mass and fracture odds ratios. J Bone Miner Metab. 2004;22(2):132–8.

    CAS  PubMed  Google Scholar 

  111. Schett G, Kiechl S, Redlich K, Oberhollenzer F, Weger S, Egger G, et al. Soluble RANKL and risk of nontraumatic fracture. JAMA. 2004;291(9):1108–13.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford J. Rosen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Paula, F.J.A., Rosen, C.J. (2015). Fat and Bone. In: Holick, M., Nieves, J. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2001-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2001-3_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2000-6

  • Online ISBN: 978-1-4939-2001-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics