Gene–Diet Interactions on Bone

  • Serge FerrariEmail author
  • David Karasik
Part of the Nutrition and Health book series (NH)


Osteoporosis is a complex disease, with both environmental and genetic components. Moreover, there are clear suggestions that nutritional and genetic factors interact to influence bone modeling and mineral homeostasis during the years of peak bone mass acquisition, as well as influence bone remodeling and the maintenance of bone mass. Here we review the bases for candidate gene and genome-wide association studies with bone mineral density and fractures, as well as the candidate gene studies that investigated gene–dietary interactions in osteoporosis. These include the VDR, ESR1, and Il-6 gene with vitamin D and/or calcium intake, and Ppar and lipids intake. Notably, few genome-wide association studies (GWAS) to date have incorporated G*E interactions into the analysis design and this is primarily due to the challenges associated with such an approach. Also, more refined phenotypes than areal bone mineral density (aBMD) are required, with a focus on cellular and molecular processes in bones in response to nutrition. If successful, such genome-wide interaction studies (GWIS) can contribute to better bone health by proposing individualized Recommended Dietary Allowances (RDA) for various nutrients.


Genetics Genome-wide associations VDR ESR1 IL-6 Phenotype Bone mineral density Interaction Calcium Vitamin D 


  1. 1.
    Kelly PJ, Morrison NA, Sambrook PN, Nguyen TV, Eisman JA. Genetic influences on bone turnover, bone density and fracture. Eur J Endocrinol. 1995;133(3):265–71.PubMedGoogle Scholar
  2. 2.
    Eisman JA. Genetics of osteoporosis. Endocr Rev. 1999;20(6):788–804.PubMedGoogle Scholar
  3. 3.
    Ferrari S, Rizzoli R, Slosman D, Bonjour JP. Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab. 1998;83(2):358–61.PubMedGoogle Scholar
  4. 4.
    Bonjour JP, et al. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest. 1997;99(6):1287–94.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Chevalley T, Bonjour JP, Ferrari S, Hans D, Rizzoli R. Skeletal sites selectivity of calcium supplementation on gain in areal bone mineral density. A randomized, double-blind, placebo-controlled trial in pre-pubertal boys. J Clin Endocrinol Metab. 2005;90:3342–9.PubMedGoogle Scholar
  6. 6.
    Chevalley T, et al. Protein intake modulates the effect of calcium supplementation on bone mass gain in prepubertal boys. J Bone Miner Res. 2002;17 suppl 1:S172.Google Scholar
  7. 7.
    Weaver CM. The growing years and prevention of osteoporosis in later life. Proc Nutr Soc. 2000;59(2):303–6.PubMedGoogle Scholar
  8. 8.
    Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46(2):294–305.PubMedGoogle Scholar
  9. 9.
    Chevalley T, Bonjour JP, Ferrari S, Rizzoli R. High-protein intake enhances the positive impact of physical activity on BMC in prepubertal boys. J Bone Miner Res. 2008;23(1):131–42.PubMedGoogle Scholar
  10. 10.
    Ferrari S, Rizzoli R, Bonjour JP. Heritable and nutritional influences on bone mineral mass. Aging (Milano). 1998;10(3):205–13.Google Scholar
  11. 11.
    Bonjour JP, Chevalley T, Rizzoli R, Ferrari S. Gene-environment interactions in the skeletal response to nutrition and exercise during growth. Med Sport Sci. 2007;51:64–80.PubMedGoogle Scholar
  12. 12.
    Eisman JA. Genetics, calcium intake and osteoporosis. Proc Nutr Soc. 1998;57(2):187–93.PubMedGoogle Scholar
  13. 13.
    Ferrari SL, Rizzoli R. Gene variants for osteoporosis and their pleiotropic effects in aging. Mol Aspects Med. 2005;26(3):145–67.PubMedGoogle Scholar
  14. 14.
    Ackert-Bicknell CL, Karasik D. Impact of the environment on the skeleton: is it modulated by genetic factors? Curr Osteoporos Rep. 2013;11(3):219–28.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Rogers J, Mahaney MC, Beamer WG, Donahue LR, Rosen CJ. Beyond one gene-one disease: alternative strategies for deciphering genetic determinants of osteoporosis [editorial]. Calcif Tissue Int. 1997;60(3):225–8.PubMedGoogle Scholar
  16. 16.
    Nguyen TV, Blangero J, Eisman JA. Genetic epidemiological approaches to the search for osteoporosis genes. J Bone Miner Res. 2000;15(3):392–401.PubMedGoogle Scholar
  17. 17.
    Cardon LR, et al. Evidence for a major gene for bone mineral density in idiopathic osteoporotic families. J Bone Miner Res. 2000;15(6):1132–7.PubMedGoogle Scholar
  18. 18.
    Deng HW, et al. Evidence for a major gene for bone mineral density/content in human pedigrees identified via probands with extreme bone mineral density. Ann Hum Genet. 2002;66(Pt 1):61–74.PubMedGoogle Scholar
  19. 19.
    Livshits G, Karasik D, Pavlovsky O, Kobyliansky E. Segregation analysis reveals a major gene effect in compact and cancellous bone mineral density in 2 populations. Hum Biol. 1999;71(2):155–72.PubMedGoogle Scholar
  20. 20.
    Livshits G, Yakovenko C, Kobyliansky E. Quantitative genetic analysis of circulating levels of biochemical markers of bone formation. Am J Med Genet. 2000;94(4):324–31.PubMedGoogle Scholar
  21. 21.
    Rizzoli R, Bonjour JP, Ferrari SL. Osteoporosis, genetics and hormones. J Mol Endocrinol. 2001;26(2):79–94.PubMedGoogle Scholar
  22. 22.
    Morrison NA, et al. Prediction of bone density from vitamin D receptor alleles [see comments] [published erratum appears in Nature 1997 May 1;387(6628):106]. Nature. 1994;367(6460):284–7.PubMedGoogle Scholar
  23. 23.
    van Meurs JB, et al. Association of 5' estrogen receptor alpha gene polymorphisms with bone mineral density, vertebral bone area and fracture risk. Hum Mol Genet. 2003;12(14):1745–54.PubMedGoogle Scholar
  24. 24.
    Mann V, et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest. 2001;107(7):899–907.PubMedCentralPubMedGoogle Scholar
  25. 25.
    McGuigan FE, Reid DM, Ralston SH. Susceptibility to osteoporotic fracture is determined by allelic variation at the Sp1 site, rather than other polymorphic sites at the COL1A1 locus. Osteoporos Int. 2000;11(4):338–43.PubMedGoogle Scholar
  26. 26.
    Langdahl BL, Uitterlinden AG, Ralston SH. Large-scale analysis of association between polymorphisms in the Transforming Growth Factor Beta 1 gene (TGFB1) and osteoporosis: the GENOMOS Study. Bone. 2008;42(5):969–81.PubMedGoogle Scholar
  27. 27.
    Johnson ML, et al. Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13) [see comments]. Am J Hum Genet. 1997;60(6):1326–32.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Gong Y, et al. Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12-13. Am J Hum Genet. 1996;59(1):146–51.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Van Hul E, et al. Localization of the gene causing autosomal dominant osteopetrosis type I to chromosome 11q12-13. J Bone Miner Res. 2002;17(6):1111–7.PubMedGoogle Scholar
  30. 30.
    Gong Y, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.PubMedGoogle Scholar
  31. 31.
    Little RD, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11–9.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Boyden LM, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513–21.PubMedGoogle Scholar
  33. 33.
    Koller DL, et al. Linkage of a QTL contributing to normal variation in bone mineral density to chromosome 11q12-13. J Bone Miner Res. 1998;13(12):1903–8.PubMedGoogle Scholar
  34. 34.
    Livshits G, Trofimov S, Malkin I, Kobyliansky E. Transmission disequilibrium test for hand bone mineral density and 11q12-13 chromosomal segment. Osteoporos Int. 2002;13(6):461–7.PubMedGoogle Scholar
  35. 35.
    Kiel DP, et al. Genetic variation at the low-density lipoprotein receptor-related protein 5 (LRP5) locus modulates Wnt signaling and the relationship of physical activity with bone mineral density in men. Bone. 2007;40(3):587–96.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Ferrari SL, Deutsch S, Antonarakis SE. Pathogenic mutations and polymorphisms in the lipoprotein receptor-related protein 5 reveal a new biological pathway for the control of bone mass. Curr Opin Lipidol. 2005;16(2):207–14.PubMedGoogle Scholar
  37. 37.
    Ferrari SL, et al. Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet. 2004;74(5):866–75.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Ioannidis JP, et al. Association of polymorphisms of the estrogen receptor alpha gene with bone mineral density and fracture risk in women: a meta-analysis. J Bone Miner Res. 2002;17(11):2048–60.PubMedGoogle Scholar
  39. 39.
    van Meurs JB, Trikalinos T, Ralston SH, Study G. Large-scale analysis of association between polymorphisms in the LRP-5 and -6 genes and osteoporosis: the GENOMOS Study. JAMA. 2008;299(11):1277–90.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Richards JB, et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med. 2009;151(8):528–37.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Barr R, et al. Association between vitamin D receptor gene polymorphisms, falls, balance and muscle power: results from two independent studies (APOSS and OPUS). Osteoporos Int. 2010;21(3):457–66.PubMedGoogle Scholar
  42. 42.
    Consortium WTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.Google Scholar
  43. 43.
    Estrada K, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Paternoster L, et al. Genome-wide association meta-analysis of cortical bone mineral density unravels allelic heterogeneity at the RANKL locus and potential pleiotropic effects on bone. PLoS Genet. 2010;6(11):e1001217.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Zheng H-F, et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet. 2012;8(7):e1002745.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Medina-Gomez C, et al. Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet. 2012;8(7):e1002718.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Koller DL, et al. Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women. J Bone Miner Res. 2013;28(3):547–58.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Duncan EL, et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 2011;7(4):e1001372.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Farber CR, et al. An integrative genetics approach to identify candidate genes regulating BMD: combining linkage, gene expression, and association. J Bone Miner Res. 2009;24(1):105–16.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Hsu YH, et al. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits. PLoS Genet. 2010;6(6):e1000977.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Richards JB, et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet. 2008;371(9623):1505–12.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Liu CT, et al. Assessment of gene-by-sex interaction effect on bone mineral density. J Bone Miner Res. 2012;27(10):2051–64.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Hamza TH, et al. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee. PLoS Genet. 2011;7(8):e1002237.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Velez Edwards DR, et al. Gene-environment interactions and obesity traits among postmenopausal African-American and Hispanic women in the Women’s Health Initiative SHARe Study. Hum Genet. 2013;132(3):323–36.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Morrison NA, Yeoman R, Kelly PJ, Eisman JA. Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin. Proc Natl Acad Sci U S A. 1992;89(15):6665–9.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Ferrari S, Bonjour J, Rizzoli R. The vitamin D receptor gene and calcium metabolism. Trends Endocrinol Metab (TEM). 1998;9:259–64.Google Scholar
  57. 57.
    Dawson-Hughes B, Harris SS, Finneran S. Calcium absorption on high and low calcium intakes in relation to vitamin D receptor genotype. J Clin Endocrinol Metab. 1995;80(12):3657–61.PubMedGoogle Scholar
  58. 58.
    Wishart JM, et al. Relations between calcium intake, calcitriol, polymorphisms of the vitamin D receptor gene, and calcium absorption in premenopausal women. Am J Clin Nutr. 1997;65(3):798–802.PubMedGoogle Scholar
  59. 59.
    Gennari L, De Paola V, Merlotti D, Martini G, Nuti R. Steroid hormone receptor gene polymorphisms and osteoporosis: a pharmacogenomic review. Expert Opin Pharmacother. 2007;8(5):537–53.PubMedGoogle Scholar
  60. 60.
    Ferrari S, Manen D, Bonjour JP, Slosman D, Rizzoli R. Bone mineral mass and calcium and phosphate metabolism in young men: relationships with vitamin D receptor allelic polymorphisms. J Clin Endocrinol Metab. 1999;84(6):2043–8.PubMedGoogle Scholar
  61. 61.
    Carling T, et al. Vitamin D receptor genotypes in primary hyperparathyroidism. Nat Med. 1995;1(12):1309–11.PubMedGoogle Scholar
  62. 62.
    Giannini S, et al. The effects of vitamin D receptor polymorphism on secondary hyperparathyroidism and bone density after renal transplantation. J Bone Miner Res. 2002;17(10):1768–73.PubMedGoogle Scholar
  63. 63.
    Marco MP, et al. Vitamin D receptor genotype influences parathyroid hormone and calcitriol levels in predialysis patients. Kidney Int. 1999;56(4):1349–53.PubMedGoogle Scholar
  64. 64.
    Rubello D, et al. Secondary hyperparathyroidism is associated with vitamin D receptor polymorphism and bone density after renal transplantation. Biomed Pharmacother. 2005;59(7):402–7.PubMedGoogle Scholar
  65. 65.
    Santoro D, et al. Vitamin D metabolism and activity as well as genetic variants of the vitamin D receptor (VDR) in chronic kidney disease patients. J Nephrol. 2013;26(4):636–44.PubMedGoogle Scholar
  66. 66.
    Fischer PR, et al. Vitamin D receptor polymorphisms and nutritional rickets in Nigerian children. J Bone Miner Res. 2000;15(11):2206–10.PubMedGoogle Scholar
  67. 67.
    Baroncelli GI, et al. Rickets in the Middle East: role of environment and genetic predisposition. J Clin Endocrinol Metab. 2008;93(5):1743–50.PubMedGoogle Scholar
  68. 68.
    Ames SK, Ellis KJ, Gunn SK, Copeland KC, Abrams SA. Vitamin D receptor gene Fok1 polymorphism predicts calcium absorption and bone mineral density in children. J Bone Miner Res. 1999;14(5):740–6.PubMedGoogle Scholar
  69. 69.
    Ferrari SL, Rizzoli R, Slosman DO, Bonjour JP. Do dietary calcium and age explain the controversy surrounding the relationship between bone mineral density and vitamin D receptor gene polymorphisms? J Bone Miner Res. 1998;13(3):363–70.PubMedGoogle Scholar
  70. 70.
    Salamone LM, et al. Determinants of premenopausal bone mineral density: the interplay of genetic and lifestyle factors. J Bone Miner Res. 1996;11(10):1557–65.PubMedGoogle Scholar
  71. 71.
    Esterle L, Jehan F, Sabatier JP, Garabedian M. Higher milk requirements for bone mineral accrual in adolescent girls bearing specific caucasian genotypes in the VDR promoter. J Bone Miner Res. 2009;24(8):1389–97.PubMedGoogle Scholar
  72. 72.
    Ferrari S, et al. Vitamin-D-receptor-gene polymorphisms and change in lumbar-spine bone mineral density [see comments]. Lancet. 1995;345(8947):423–4.PubMedGoogle Scholar
  73. 73.
    Krall EA, Parry P, Lichter JB, Dawson-Hughes B. Vitamin D receptor alleles and rates of bone loss: influences of years since menopause and calcium intake. J Bone Miner Res. 1995;10(6):978–84.PubMedGoogle Scholar
  74. 74.
    Salamone LM, et al. The association between vitamin D receptor gene polymorphisms and bone mineral density at the spine, hip and whole-body in premenopausal women [published erratum appears in Osteoporos Int 1996;6(3):187-8]. Osteoporos Int. 1996;6(1):63–8.PubMedGoogle Scholar
  75. 75.
    Kiel DP, et al. The BsmI vitamin D receptor restriction fragment length polymorphism (bb) influences the effect of calcium intake on bone mineral density. J Bone Miner Res. 1997;12(7):1049–57.PubMedGoogle Scholar
  76. 76.
    Brown MA, et al. Genetic control of bone density and turnover: role of the collagen 1alpha1, estrogen receptor, and vitamin D receptor genes. J Bone Miner Res. 2001;16(4):758–64.PubMedGoogle Scholar
  77. 77.
    Stathopoulou MG, et al. The role of vitamin D receptor gene polymorphisms in the bone mineral density of Greek postmenopausal women with low calcium intake. J Nutr Biochem. 2011;22(8):752–7.PubMedGoogle Scholar
  78. 78.
    Feskanich D, et al. Vitamin D receptor genotype and the risk of bone fractures in women. Epidemiology. 1998;9(5):535–9.PubMedGoogle Scholar
  79. 79.
    Graafmans WC, et al. The effect of vitamin D supplementation on the bone mineral density of the femoral neck is associated with vitamin D receptor genotype. J Bone Miner Res. 1997;12(8):1241–5.PubMedGoogle Scholar
  80. 80.
    Michaelsson K, et al. The positive effect of dietary vitamin D intake on bone mineral density in men is modulated by the polyadenosine repeat polymorphism of the vitamin D receptor. Bone. 2006;39(6):1343–51.PubMedGoogle Scholar
  81. 81.
    Molgaard C, et al. Does vitamin D supplementation of healthy Danish Caucasian girls affect bone turnover and bone mineralization? Bone. 2010;46(2):432–9.PubMedGoogle Scholar
  82. 82.
    Arabi A, et al. Vitamin D receptor gene polymorphisms modulate the skeletal response to vitamin D supplementation in healthy girls. Bone. 2009;45(6):1091–7.PubMedGoogle Scholar
  83. 83.
    Morrison NA, et al. Vitamin D receptor genotypes influence the success of calcitriol therapy for recurrent vertebral fracture in osteoporosis. Pharmacogenet Genomics. 2005;15(2):127–35.PubMedGoogle Scholar
  84. 84.
    Matsuyama T, et al. Vitamin D receptor genotypes and bone mineral density. Lancet. 1995;345(8959):1238–9.PubMedGoogle Scholar
  85. 85.
    Yamagata Z, et al. Vitamin D receptor gene polymorphism and bone mineral density in healthy Japanese women. Lancet. 1994;344(8928):1027.PubMedGoogle Scholar
  86. 86.
    Ensrud KE, et al. Vitamin D receptor gene polymorphisms and the risk of fractures in older women. For the Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1999;14(10):1637–45.PubMedGoogle Scholar
  87. 87.
    Vandevyver C, et al. Lack of association between estrogen receptor genotypes and bone mineral density, fracture history, or muscle strength in elderly women. J Bone Miner Res. 1999;14(9):1576–82.PubMedGoogle Scholar
  88. 88.
    Kurabayashi T, et al. Effect of vitamin D receptor and estrogen receptor gene polymorphism on the relationship between dietary calcium and bone mineral density in Japanese women. J Bone Miner Metab. 2004;22(2):139–47.PubMedGoogle Scholar
  89. 89.
    Salmen T, et al. Early postmenopausal bone loss is associated with PvuII estrogen receptor gene polymorphism in Finnish women: effect of hormone replacement therapy. J Bone Miner Res. 2000;15(2):315–21.PubMedGoogle Scholar
  90. 90.
    Yang LC, et al. Association of estrogen receptor-alpha gene Pvull polymorphisms with the effect of calcium supplementation on skeletal development in Chinese pubertal girls. Biomed Environ Sci. 2009;22(6):480–7.PubMedGoogle Scholar
  91. 91.
    Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med. 1997;337(10):670–6.PubMedGoogle Scholar
  92. 92.
    Manolagas SC. The role of IL-6 type cytokines and their receptors in bone. Ann N Y Acad Sci. 1998;840:194–204.PubMedGoogle Scholar
  93. 93.
    Fishman D, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998;102(7):1369–76.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Ferrari SL, Ahn-Luong L, Garnero P, Humphries SE, Greenspan SL. Two promoter polymorphisms regulating interleukin-6 gene expression are associated with circulating levels of C-reactive protein and markers of bone resorption in postmenopausal women. J Clin Endocrinol Metab. 2003;88(1):255–9.PubMedGoogle Scholar
  95. 95.
    Ferrari SL, et al. A functional polymorphic variant in the interleukin-6 gene promoter associated with low bone resorption in postmenopausal women. Arthritis Rheum. 2001;44(1):196–201.PubMedGoogle Scholar
  96. 96.
    Moffett SP, et al. Association of the G-174C variant in the interleukin-6 promoter region with bone loss and fracture risk in older women. J Bone Miner Res. 2004;19(10):1612–8.PubMedGoogle Scholar
  97. 97.
    Lorentzon M, Lorentzon R, Nordstrom P. Interleukin-6 gene polymorphism is related to bone mineral density during and after puberty in healthy white males: a cross-sectional and longitudinal study. J Bone Miner Res. 2000;15(10):1944–9.PubMedGoogle Scholar
  98. 98.
    Garnero P, et al. Association between a functional interleukin-6 gene polymorphism and peak bone mineral density and postmenopausal bone loss in women: the OFELY study. Bone. 2002;31(1):43–50.PubMedGoogle Scholar
  99. 99.
    Ferrari SL, et al. Interactions of interleukin-6 promoter polymorphisms with dietary and lifestyle factors and their association with bone mass in men and women from the framingham osteoporosis study. J Bone Miner Res. 2004;19(4):552–9.PubMedGoogle Scholar
  100. 100.
    McLean RR, et al. Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med. 2004;350(20):2042–9.PubMedGoogle Scholar
  101. 101.
    van Meurs JB, et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med. 2004;350(20):2033–41.PubMedGoogle Scholar
  102. 102.
    McLean RR, Hannan MT. B vitamins, homocysteine, and bone disease: epidemiology and pathophysiology. Curr Osteoporos Rep. 2007;5(3):112–9.PubMedGoogle Scholar
  103. 103.
    Wang H, Liu C. Association of MTHFR C667T polymorphism with bone mineral density and fracture risk: an updated meta-analysis. Osteoporos Int. 2012;23(11):2625–34.PubMedGoogle Scholar
  104. 104.
    Kiel DP, et al. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet. 2007;8 Suppl 1:S14.PubMedCentralPubMedGoogle Scholar
  105. 105.
    McLean RR, et al. Association of a common polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene with bone phenotypes depends on plasma folate status. J Bone Miner Res. 2004;19(3):410–8.PubMedGoogle Scholar
  106. 106.
    Macdonald HM, et al. Methylenetetrahydrofolate reductase polymorphism interacts with riboflavin intake to influence bone mineral density. Bone. 2004;35(4):957–64.PubMedGoogle Scholar
  107. 107.
    Zhu K, et al. The effects of homocysteine and MTHFR genotype on hip bone loss and fracture risk in elderly women. Osteoporos Int. 2009;20(7):1183–91.PubMedGoogle Scholar
  108. 108.
    Yazdanpanah N, et al. Low dietary riboflavin but not folate predicts increased fracture risk in postmenopausal women homozygous for the MTHFR 677T allele. J Bone Miner Res. 2008;23(1):86–94.PubMedGoogle Scholar
  109. 109.
    Steer CD, Emmett PM, Lewis SJ, Smith GD, Tobias JH. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is associated with spinal BMD in 9-year-old children. J Bone Miner Res. 2009;24(1):117–24.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Ali AA, et al. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology. 2005;146(3):1226–35.PubMedGoogle Scholar
  111. 111.
    Grey A. Skeletal consequences of thiazolidinedione therapy. Osteoporos Int. 2008;19(2):129–37.PubMedGoogle Scholar
  112. 112.
    Ogawa S, et al. Association of bone mineral density with a polymorphism of the peroxisome proliferator-activated receptor gamma gene: PPARgamma expression in osteoblasts. Biochem Biophys Res Commun. 1999;260(1):122–6.PubMedGoogle Scholar
  113. 113.
    Rhee EJ, et al. The effects of C161→T polymorphisms in exon 6 of peroxisome proliferator-activated receptor-gamma gene on bone mineral metabolism and serum osteoprotegerin levels in healthy middle-aged women. Am J Obstet Gynecol. 2005;192(4):1087–93.PubMedGoogle Scholar
  114. 114.
    Harslof T, et al. Polymorphisms of the peroxisome proliferator-activated receptor gamma (PPARgamma) gene are associated with osteoporosis. Osteoporos Int. 2011;22(10):2655–66.PubMedGoogle Scholar
  115. 115.
    Ackert-Bicknell CL, et al. PPARG by dietary fat interaction influences bone mass in mice and humans. J Bone Miner Res. 2008;23(9):1398–408.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Neel JV. When some fine old genes meet a ‘new’ environment. World Rev Nutr Diet. 1999;84:1–18.PubMedGoogle Scholar
  117. 117.
    Karasik D. Osteoporosis: an evolutionary perspective. Hum Genet. 2008;124(4):349–56.PubMedGoogle Scholar
  118. 118.
    Nicolae DL, et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6(4):e1000888.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Dermitzakis ET. Regulatory variation and evolution: implications for disease. Adv Genet. 2008;61:295–306.PubMedGoogle Scholar
  120. 120.
    Lin Q, Wagner W, Zenke M. Analysis of genome-wide DNA methylation profiles by BeadChip technology. Methods Mol Biol. 2013;1049:21–33.PubMedGoogle Scholar
  121. 121.
    Beaty TH, et al. Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate. Genet Epidemiol. 2011;35(6):469–78.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Liu Y, et al. Genome-wide interaction-based association analysis identified multiple new susceptibility Loci for common diseases. PLoS Genet. 2011;7(3):e1001338.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Kussmann M, Krause L, Siffert W. Nutrigenomics: where are we with genetic and epigenetic markers for disposition and susceptibility? Nutr Rev. 2010;68 Suppl 1:S38–47.PubMedGoogle Scholar
  124. 124.
    Macdonald HM, et al. Vitamin K1 intake is associated with higher bone mineral density and reduced bone resorption in early postmenopausal Scottish women: no evidence of gene-nutrient interaction with apolipoprotein E polymorphisms. Am J Clin Nutr. 2008;87(5):1513–20.PubMedGoogle Scholar
  125. 125.
    Sonoda T, et al. Interaction between ESRalpha polymorphisms and environmental factors in osteoporosis. J Orthop Res. 2012;30(10):1529–34.PubMedGoogle Scholar
  126. 126.
    Li X, He GP, Zhang B, Chen YM, Su YX. Interactions of interleukin-6 gene polymorphisms with calcium intake and physical activity on bone mass in pre-menarche Chinese girls. Osteoporos Int. 2008;19(11):1629–37.PubMedGoogle Scholar
  127. 127.
    Stathopoulou MG, et al. Low-density lipoprotein receptor-related protein 5 polymorphisms are associated with bone mineral density in Greek postmenopausal women: an interaction with calcium intake. J Am Diet Assoc. 2010;110(7):1078–83.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Bone Diseases, Faculty of MedicineGeneva University HospitalGeneva 14Switzerland
  2. 2.Faculty of Medicine in the GalileeBar-Ilan UniversitySafedIsrael
  3. 3.Hebrew SeniorLifeBostonUSA

Personalised recommendations