Advertisement

Nutrition and Bone Health During Skeletal Modeling and Bone Consolidation of Childhood and Adolescence

  • Velimir MatkovicEmail author
  • Diane Visy
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Bone accretion during childhood is proportional to the rate of growth. During this age interval height velocity is relatively slow for both boys and girls. As a direct consequence of this, retention of calcium in the body of an average child is lower than the calcium retention in an adolescent. Bone size, bone mass, and bone mineral density of the regional skeletal sites increase on average by about 4 %/year from childhood to late adolescence and young adulthood when most of the bone mass will be accumulated. Calcium needs are greater during adolescence (pubertal growth spurt) than in either childhood or adulthood. According to calcium balance studies the threshold intake for adolescents is about 1,500 mg/day. Inadequate calcium intake during growth may increase the risk of childhood fractures and predispose certain individuals to a lower peak bone mass.

Keywords

Calcium intake Growth Peak bone mass 

References

  1. 1.
    Matkovic V, Fontana D, Tominac C, Goel P, Chesnut CH. Factors which influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. Am J Clin Nutr. 1990;52:878–88.PubMedGoogle Scholar
  2. 2.
    Matkovic V, Kostial K, Simonovic I, Buzina R, Brodarec A, Nordin BEC. Bone status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr. 1979;32:540–9.PubMedGoogle Scholar
  3. 3.
    Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C. Peak bone mass. Osteoporos Int. 2000;11:985–1009.PubMedCrossRefGoogle Scholar
  4. 4.
    Widdowson EM. Growth and body composition in childhood. In: Brunser O, Carrazza F, Gracey M, Nichols B, Senterre J, editors. Clinical nutrition of the young child. New York, NY: Raven; 1985. p. 1–21.Google Scholar
  5. 5.
    U.S. Department of Health and Human Services, Public Health Service. Healthy people, 2000. National health promotion and disease prevention objectives. Boston, MA: Jones and Bartlett; 1992. p. 1–153.Google Scholar
  6. 6.
    Heaney RP, Matkovic V. Inadequate peak bone mass. In: Riggs BL, Melton LJ, editors. Osteoporosis: etiology, diagnosis and management. 2nd ed. Philadelphia, PA: Lippincott-Raven Publishers; 1995. p. 115–31.Google Scholar
  7. 7.
    Hu JF, Zhao XH, Jia JB, Parpia B, Campbell TC. Dietary calcium and bone density among middle-aged and elderly women in China. Am J Clin Nutr. 1993;58:219–27.PubMedGoogle Scholar
  8. 8.
    Sandler RB, Slemenda C, LaPorte RE, Cauley JA, Schramm MM, Baresi M, Kriska AM. Postmenopausal bone density and milk consumption in childhood and adolescence. Am J Clin Nutr. 1985;42:270–4.PubMedGoogle Scholar
  9. 9.
    Glastre C, Braillon P, David L, Cochat P, Meunier PJ, Delmas PD. Measurement of bone mineral content of the lumbar spine by dual energy X-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab. 1990;70:1330–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991;73:555–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP. Timing of peak bone mass in caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994;93:799–808.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Recker RR, Davies KM, Hinders SM, Heaney RP, Stegman MR, Kimmel DB. Bone gain in young adult women. JAMA. 1992;268:2403–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Matkovic V. Calcium metabolism and calcium requirements during skeletal modeling and consolidation of bone mass. Am J Clin Nutr. 1991;54:245S–60.PubMedGoogle Scholar
  14. 14.
    Matkovic V, Heaney RP. Calcium balance during human growth: evidence for threshold behavior. Am J Clin Nutr. 1992;55:992–6.PubMedGoogle Scholar
  15. 15.
    Pettifor JM, Ross FP, Moodley G, DeLuca HF, Travers R, Glorieux FH. Calcium deficiency rickets associated with elevated 1,25-dihydroxyvitamin D concentrations in a rural black population. In: Norman AW, Schaefer K, Herrath DV, Grigoleit H-G, Coburn JW, DeLuca HF, Mawer EB, Suda T, editors. Vitamin D, basic research and its clinical application. New York, NY: Walter de Gruyter & Company; 1979. p. 1125–7.Google Scholar
  16. 16.
    Thacher TD, Fischer PR, Pettifor JM, Lawson JO, Isichei CO, Reading JC, Chan GM. A comparison of calcium, vitamin D, or both for nutritional rickets in Nigerian children. New Engl J Med. 1999;341:563–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Chan GM, Hess M, Hollis J, Book LS. Bone mineral status in childhood accident fractures. Am J Dis Child. 1984;139:569–70.Google Scholar
  18. 18.
    Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ. Bone mineral density in girls with forearm fractures. J Bone Miner Res. 1998;13:143–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Begum A, Pereira SM. Calcium balance studies on children accustomed to low calcium intakes. Br J Nutr. 1969;23:905–11.PubMedCrossRefGoogle Scholar
  20. 20.
    Fleming KH, Heimbach JT. Consumption of calcium in the U.S.: food sources and intake levels. J Nutr. 1994;124:1426S–30.PubMedGoogle Scholar
  21. 21.
    Food and Nutrition Board, Institute of Medicine. Dietary reference intakes. Washington, DC: National Academy Press; 1997.Google Scholar
  22. 22.
    Ilich JZ, Skugor M, Hangartner T, Baoshe A, Matkovic V. Relation of nutrition, body composition, and physical activity to skeletal development: a cross-sectional study in preadolescent females. J Am Coll Nutr. 1998;17:136–47.PubMedCrossRefGoogle Scholar
  23. 23.
    Matkovic V, Landoll JD, Badenhop-Stevens NE, Ha EJ, Crncevic-Orlic Z, Li B, Goel P. Nutrition influences skeletal development from childhood to adulthood: a study of hip, spine, and forearm in adolescent females. J Nutr. 2004;134:701S–5.PubMedGoogle Scholar
  24. 24.
    Black RE, Williams SM, Jones IE, Goulding A. Children who avoid drinking cow milk have low dietary intakes and poor bone health. Am J Clin Nutr. 2002;76:675–80.PubMedGoogle Scholar
  25. 25.
    Orr JB. Milk consumption and the growth of school children. Lancet. 1928;1:202–3.CrossRefGoogle Scholar
  26. 26.
    Nordin BEC. Nutritional consideration. In: Nordin BEC, editor. Calcium, phosphate and magnesium metabolism. Edinburgh: Churchill Livingstone; 1976. p. 1–35.Google Scholar
  27. 27.
    Prentice A, Stear SJ, Ginty F, Jones SC, Mills L, Cole TJ. Calcium supplementation increases height and bone mass of 16-18 year old boys. J Bone Min Res. 2002;17:S397.Google Scholar
  28. 28.
    Dibba B, Prentice A, Ceesay M, Stirling DM, Cole TJ, Poskitt EME. Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low-calcium diet. Am J Clin Nutr. 2000;71:544–9.PubMedGoogle Scholar
  29. 29.
    Moll GW, Rosenfield RL, Fang VS. Administration of low dose estrogen rapidly and directly stimulates growth hormone production. Am J Dis Child. 1986;140:124–7.PubMedGoogle Scholar
  30. 30.
    Ross JL, Cassorla FG, Skerda MC, Valk IG, Loriaux L, Culter GB. A preliminary study of the effect of estrogen dose on growth in Turner’s syndrome. New Engl J Med. 1983;309:1104.PubMedCrossRefGoogle Scholar
  31. 31.
    Garn SM. The earlier gain and the later loss of cortical bone. Springfield, IL: Charles C. Thomas; 1970.Google Scholar
  32. 32.
    Matkovic V, Goel PK, Badenhop-Stevens NE, Landoll JD, Li B, Ilich-Ernst JZ, Skugor M, Nagode LA, Mobley LS, Ha EJ, Hangartner TN, Clairmont A. Effects of calcium supplementation on bone mineral density of young females from childhood to young adulthood: a randomized clinical trial. Am J Clin Nutr. 2005;81:175–88.PubMedGoogle Scholar
  33. 33.
    Alffram PA, Bauer GCH. Epidemiology of fractures of the forearm. J Bone Joint Surg. 1962;44A:105–14.Google Scholar
  34. 34.
    Bailey DA, Wedge JH, McCulloch RG, Martin AD, Bernhardson SC. Epidemiology of fractures of the distal end of the radius in children as associated with growth. J Bone Joint Surg. 1989;71-A(8):1225–31.Google Scholar
  35. 35.
    Matkovic V, Ciganovic M, Tominac C, Kostial K. Osteoporosis and epidemiology of fractures in Croatia. An international comparison. Henry Ford Hosp Med J. 1980;28:116–26.PubMedGoogle Scholar
  36. 36.
    Rigotti NA, Nussbaum SR, Herzog DB, Neer RM. Osteoporosis in women with anorexia nervosa. New Engl J Med. 1984;311:1601–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Matkovic V, Ilich JZ, Skugor M, Badenhop NE, Clairmont A, Goel P, Klisovic D, Nasseh RW, Landoll JD. Leptin is inversely related to age at menarche in human females. J Clin Endo Metab. 1997;82:3239–45.Google Scholar
  38. 38.
    Matkovic V, Ilich JZ. Calcium requirements during growth. Are the current standards adequate? Nutr Rev. 1993;51:171–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Charles P, Taagehoj Jensen F, Mosekilde L, Hvid HH. Calcium metabolism evaluated by 47Ca kinetics: estimation of dermal calcium loss. Clin Sci. 1983;65:415–22.PubMedGoogle Scholar
  40. 40.
    Klesges RC, Ward KD, Shelton ML, Applegate WB, Cantler ED, Palmieri GMA, Harmon K, Davis J. Changes in bone mineral content in male athletes. Mechanisms of action and intervention effects. JAMA. 1996;276:226–30.PubMedCrossRefGoogle Scholar
  41. 41.
    Ilich JZ, Badenhop NE, Jelic T, Clairmont AC, Nagode LA, Matkovic V. Calcitriol and bone mass accumulation in females during puberty. Calcif Tissue Int. 1997;61:104–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Weaver CM, Martin BR, Plawecki KL. Differences in calcium metabolism between adolescent and adult females. Am J Clin Nutr. 1995;61:577–81.PubMedGoogle Scholar
  43. 43.
    Matkovic V, Ilich JZ, Andon MB, Hsieh LC, Tzagournis MA, Lagger BJ, Goel PK. Urinary calcium, sodium, and bone mass of young females. Am J Clin Nutr. 1995;62:417–25.PubMedGoogle Scholar
  44. 44.
    FAO/WHO Expert Consultation, Bangkok, Thailand, 1998. Calcium. In: Vitamin and mineral requirements in human nutrition. 2nd ed. Geneva: WHO and FAO of the United Nations; 2004. p. 59–93.Google Scholar
  45. 45.
    FAO/WHO Expert Group, Rome, Italy. Calcium requirements. Geneva: WHO and FAO of the United Nations; 1962.Google Scholar
  46. 46.
    Verd Vellespir S, Dominguez Sanches J, Gonzales Quintial M, Vidal Mas M, Soler Mariano AC, Company De Roque C, Marcos Sevilla JM. Asociacion entre el contenido en calcio de las aguas de consumo y las fracturas en los ninos. An Esp Pediatr. 1992;37:461–5.Google Scholar
  47. 47.
    Johnston Jr CC, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, Peacock M. Calcium supplementation and increases in bone mineral density in children. New Engl J Med. 1992;327:82–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Lloyd T, Andon MB, Rollings N, Martel JK, Landis RJ, Demers LM, Eggli DF, Kieselhorst K, Kulin HE. Calcium supplementation and bone mineral density in adolescent girls. JAMA. 1993;270:841–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee WTK, Leung SSF, Wang SF, Xu YC, Zeng WP, Lau J, Oppenheimer SJ, Cheng JCY. Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. Am J Clin Nutr. 1994;60:744–50.PubMedGoogle Scholar
  50. 50.
    Cadogan J, Eastell R, Jones N, Barker ME. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ. 1997;315:1255–60.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Chan GM, Hoffman K, McMurray M. Effect of dairy products on bone and body composition in pubertal girls. J Pediatr. 1995;126:551–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Bonjour JP, Carrie AL, Ferrarri S, Clavien H, Slosman D, Theintz G, Rizzoli R. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest. 1997;99:1287–94.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Nowson CA, Green RM, Hopper JL, Sherwin AJ, Young D, Kaymakci B, Guest CS, Schmid M, Larkins RG, Wark JD. A co-twin study of the effect of calcium supplementation on bone density during adolescence. Osteoporos Int. 1997;7:219–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Merriles MJ, Smart EJ, Gilchrist NL, et al. Effects of dairy food supplements on bone mineral density in teenage girls. Eur J Nutr. 2000;39:256–62.CrossRefGoogle Scholar
  55. 55.
    Heaney RP. Interpreting trials of bone-active agents. Am J Med. 1995;98:329–30.PubMedCrossRefGoogle Scholar
  56. 56.
    Slemenda C, Reister TK, Peacock M, Johnston Jr CC. Bone growth in children following the cessation of calcium supplementation. J Bone Miner Res. 1993;8:S154.Google Scholar
  57. 57.
    Lee WTK, Leung SSF, Leung DMY, Cheng JCY. A follow-up study on the effects of calcium-supplement withdrawal and puberty on bone acquisition of children. Am J Clin Nutr. 1996;64:71–7.PubMedGoogle Scholar
  58. 58.
    Dibba B, Prentice A, Ceesay M, Mendy M, Darboe S, Stirling DM, Cole TJ, Poskitt EME. Bone mineral contents and plasma osteocalcin concentrations of Gambian children 12 and 24 mo after the withdrawal of a calcium supplement. Am J Clin Nutr. 2002;76:681–6.PubMedGoogle Scholar
  59. 59.
    Matkovic V. Can osteoporosis be prevented? Bone mineralization during growth and development. In: Johnston FE, Zemel B, Eveleth PB, editors. Human growth in context. London, UK: Smith-Gordon; 183. p. 193–1999.Google Scholar
  60. 60.
    Matkovic V, Landoll JD, Badenhop-Stevens NE, Ha EJ, Crncevic-Orlic Z, Li B, Goel PK. Calcium supplementation and bone fragility fractures during growth a randomized controlled trial. Int Congr Ser. 2007;1297:60–5.CrossRefGoogle Scholar
  61. 61.
    Matkovic V, Badenhop NE, Ilich JZ. Trace element and mineral nutrition in healthy people: adolescents. In: Bogden JD, Klevay LM, editors. The clinical nutrition of the essential trace elements and minerals - the guide for health professionals. Totowa, NJ: Humana Press; 2000. p. 153–82.CrossRefGoogle Scholar
  62. 62.
    Heaney RP, Nordin BEC. Calcium effects on phosphorus absorption: implications for the prevention and co-therapy of osteoporosis. J Am Coll Nutr. 2002;21:239–44.PubMedCrossRefGoogle Scholar
  63. 63.
    Garn SM, Rohmann CG, Behar M, Viteri F, Gozman M. Compact bone deficiency in protein-calorie malnutrition. Science. 1964;145:1444–5.PubMedCrossRefGoogle Scholar
  64. 64.
    NIH Consensus Conference: optimal calcium intake. JAMA. 1994; 272:1942–8.Google Scholar
  65. 65.
    Ilich-Ernst JZ, McKenna AA, Badenhop NE, Clairmont AC, Andon MB, Nahhas RW, Goel P, Matkovic V. Iron status, menarche, and calcium supplementation in adolescent girls. Am J Clin Nutr. 1998;68:880.PubMedGoogle Scholar
  66. 66.
    Andon MB, Ilich JZ, Tzagournis MA, Matkovic V. Magnesium balance in adolescent females consuming a low or high calcium diet. Am J Clin Nutr. 1996;63:950–3.PubMedGoogle Scholar
  67. 67.
    McKenna AA, Ilich JZ, Andon MB, Wang C, Matkovic V. Zinc balance in adolescent females consuming a low- or high-calcium diet. Am J Clin Nutr. 1997;65:1460–4.PubMedGoogle Scholar
  68. 68.
    Holben D, Smith AM, Ha EJ, Ilich JZ, Matkovic V. Selenium (Se) absorption, balance, and status in adolescent females throughout puberty. FASEB J. 1996;10:A532.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Osteoporosis Prevention and Treatment CenterThe Ohio State UniversityColumbusUSA
  2. 2.Bone and Mineral Metabolism LaboratoryThe Ohio State UniversityColumbusUSA
  3. 3.GlaxoSmithKline (GSK)WavreBelgium

Personalised recommendations