Nutritional Requirements for Fetal and Neonatal Bone Health and Development

  • Stephanie A. AtkinsonEmail author
  • Dilisha Rodrigopulle
Part of the Nutrition and Health book series (NH)


Evidence is emerging that skeletal development has its origins in fetal life and early infancy. The concept of “developmental programming” embraces the theory that metabolic events during critical time periods of antenatal and postnatal development have moderating effects on peak bone mass achieved in late adolescence and even osteoporosis risk. In addition to heritable factors, long-term programming of bone growth and bone mass accretion may be influenced by exposures during pregnancy including maternal body composition, diet and lifestyle factors (smoking, physical activity) as well as early infant nutrition, physical activity and growth patterns. The genetic variants responsible for diversity in bone mass between individuals and populations are also beginning to be identified. Current recommendations for nutrient requirements for optimal bone health do not take all of the genetic, epigenetic, and metabolic factors into account. Future research is needed to provide a composite of information so that nutrient recommendations can be better defined in order to optimize skeletal mineralization, achievement of peak bone mass, and reduced risk of osteoporosis in later life.


Developmental origins Pregnancy nutrition Fetal bone Neonatal bone Infant nutrition Bone mineral content Dual energy X-ray absorptiometry 



The contributions of collaborators, research assistants, and graduate students to the research cited in this chapter from the author’s laboratory are gratefully acknowledged.


  1. 1.
    Widdowson EM, Dickerson JWT. Chemical composition of the body as a whole. In: Comar CL, Bronne F, editors. Mineral metabolism: an advanced treastise. Part A, vol. 2. New York, NY: Academic; 1964. p. 1–247.Google Scholar
  2. 2.
    Ellis KJ, Shypailo RH, Schanler RJ, et al. Body composition analysis of the neonate: new reference data. Am J Hum Biol. 1993;3:323–30.CrossRefGoogle Scholar
  3. 3.
    Brunton JA, Weiler HA, Atkinson SA. Improvement in the accuracy of dual energy X-ray absorptiometry for whole body and regional analysis of body composition. Validation using piglets and methodological considerations in infants. Pediatr Res. 1997;41:1–7.CrossRefGoogle Scholar
  4. 4.
    Koo WWK, Walters J, Bush AJ. Technical considerations of dual-energy X-ray absorptiometery-based bone mineral measurements for pediatric studies. J Bone Miner Res. 1995;10:1998–2004.PubMedCrossRefGoogle Scholar
  5. 5.
    Harvey NC, Javaid MK, Poole JR, et al. Paternal skeletal size predicts intrauterine bone mineral accrual. J Clin Endocrinol Metab. 2008;93(5):1676–81.PubMedCrossRefGoogle Scholar
  6. 6.
    Yang TL, Zhao LJ, Liu YJ, Liu JF, Recker RR, Deng HW. Genetic and environmental correlations of bone mineral density at different skeletal sites in females and males. Calcif Tissue Int. 2006;78(4):212–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Tse KY, Macias BR, Meyer RS, Hargens AR. Heritability of bone density: regional and gender differences in monozygotic twins. J Orthop Res. 2009;27(2):150–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Holroyd C, Harvey N, Dennison E, Cooper C. Epigenetic influences in the developmental origins of osteoporosis. Osteoporos Int. 2012;23(2):401–10.PubMedCrossRefGoogle Scholar
  9. 9.
    Cooper C, Westlake S, Harvey N, Javaid K, Dennison E, Hanson M. Review: developmental origins of osteoporotic fracture. Osteroporos Int. 2006;17(3):337–47.CrossRefGoogle Scholar
  10. 10.
    Harvey NC, Javaid MK, Arden NK, et al. Maternal predictors of neonatal bone size and geometry: the Southampton women’s survey. J Dev Orig Health Dis. 2010;1(1):35–41.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Devlin MJ, Bouxsein ML. Influence of pre- and peri-natal nutrition on skeletal acquisition and maintenance. Bone. 2012;50(2):444–51.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Macdonald-Wallis C, Tobias JH, Smith GD, Lawlor DA. Relation of maternal prepregnancy body mass index with offspring bone mass in childhood: is there evidence for an intrauterine effect? Am J Clin Nutr. 2010;92(4):872–80.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Hogler W, Schmid A, Raber G, et al. Perinatal bone turnover in term human neonates and the influence of maternal smoking. Pediatr Res. 2003;53(5):817–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Ganpule A, Yajnik CS, Fall CH, et al. Bone mass in Indian children – relationships to maternal nutritional status and diet during pregnancy: the Pune maternal nutrition study. J Clin Endocrinol Metab. 2006;91(8):2994–3001.PubMedCrossRefGoogle Scholar
  15. 15.
    Yin J, Dwyer T, Riley M, Cochrane J, Jones G. The association between maternal diet during pregnancy and bone mass of the children at age 16. Eur J Clin Nutr. 2010;64(2):131–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Cole ZA, Gale CR, Javaid MK, Robinson SM, Law C, Boucher BJ, Crozier SR, Godfrey KM, Dennison EM, Cooper C. Maternal dietary patterns during pregnancy and childhood bone mass: a longitudinal study. J Bone Miner Res. 2009;24(4):663–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Chang S-C, O’Brien KO, Nathanson MS, Caulfield LE, Mancini J, Witter FR. Fetal femur length is influenced by maternal dairy intake in pregnant African American adolescents. Am J Clin Nutr. 2003;77(5):1248–54.PubMedGoogle Scholar
  18. 18.
    Young BE, McNanley TJ, Cooper EM, McIntyre AW, Witter F, Harris ZL, O’Brien KO. Maternal vitamin D status and calcium intake interact to affect fetal skeletal growth in utero in pregnant adolescents. Am J Clin Nutr. 2012;95(5):1103–12.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Liu Z, Qiu L, Chen YM, Su YX. Effect of milk and calcium supplementation on bone density and bone turnover in pregnant Chinese women: a randomized controlled trail. Arch Gynecol Obstet. 2011;283:205–11.PubMedCrossRefGoogle Scholar
  20. 20.
    Steer CD, Tobias JH. Insights into the programming of bone development from the Avon Longitudinal study of parents and children (ALSPAC). Am J Clin Nutr. 2011;94(6 Suppl):1861S–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Kovacs CS. Vitamin D, in pregnancy and lactation: maternal, fetal, and neonatal outcomes from human and animal studies. Am J Clin Nutr. 2008;88:520S–8.PubMedGoogle Scholar
  22. 22.
    O’Brien KO, Donangelo CM, Ritchie LD, Gildengorin G, Abrams S, King JC. Serum 1,25-dihydroxyvitamin D and calcium intake affect rates of bone calcium deposition during pregnancy and the early postpartum period. Am J Clin Nutr. 2012;96(1):64–72.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Martin R, Harvey NC, Crozier SR, Poole JR, Javaid MK, Dennison EM, et al. Placental calcium transporter (PMCA3) gene expression predicts intrauterine bone mineral accrual. Bone. 2007;40(5):1203–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Zeghoud F, Vervel C, Guillozo H, Walrant-Debray O, Boutignon H, Garabédian M. Subclinical vitamin D deficiency in neonates: definition and response to vitamin D supplements. Am J Clin Nutr. 1997;65:771–8.PubMedGoogle Scholar
  25. 25.
    Morley R, Carlin JB, Pasco JA, Wark JD, Ponsonby AL. Maternal 25-hydroxyvitamin D concentration and offspring birth size: effect modification by infant VDR genotype. Eur J Clin Nutr. 2009;63(6):802–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Weiler H, Fitzpatirck-Wong S, Veitch R, et al. Vitamin D deficiency and whole-body and femur bone mass relative to weight in healthy newborns. CMAJ. 2005;172:757–61.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Viljakainen HT, Saarnio E, Hytinantti T, Miettinen M, Surcel H, Mäkitie O, Andersson S, Laitinen K, Lamberg-Allardt C. Maternal vitamin D status determines bone variables in the newborn. J Clin Endo Metab. 2010;95(4):1749–57.CrossRefGoogle Scholar
  28. 28.
    Mahon P, Harvey N, Crozier S, Inskip H, Robinson S, Arden N, Swaminathan R, Cooper C, Godfrey K. Low maternal vitamin D status and fetal bone development: cohort study. J Bone Mineral Res. 2010;25(1):14–9.CrossRefGoogle Scholar
  29. 29.
    Ward LM, Gaboury I, Ladhani M, Zlotkin S. Vitamin D-deficiency rickets among children in Canada. CMAJ. 2007;177:161–6.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Javaid MK, Crozier SR, Harvey NC, Gale CR, Dennison EM, Arden K, Princess Anne Hospital Study Group, et al. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet. 2006;367:36–43.PubMedCrossRefGoogle Scholar
  31. 31.
    Koo WW, Walters JC, Esterlitz J, Levine RJ, Bush AJ, Sibai B. Maternal calcium supplementation and fetal bone mineralization. Obstet Gynecol. 1999;94(4):577–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Heppe DH, Medina-Gomez C, Hofman A, Franco OH, Rivadeneira F, Jaddoe VW. Maternal first-trimester diet and childhood bone mass: the generation R study. Am J Clin Nutr. 2013;98(1):224–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Devlin MJ, Grasemann C, Cloutier AM, et al. Maternal perinatal diet induces developmental programming of bone architecture. J Endocrinol. 2013;217(1):69–81.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Harvey NC, Mahon PA, Kim M, Cole ZA, Robinson SM, et al. Intrauterine growth and postnatal development: findings form the Southampton Women’s Survey. Paediatr Perinat Epidemiol. 2011;26:34–44.CrossRefGoogle Scholar
  35. 35.
    Lanham SA, Roberts C, Cooper C, Oreffo RO. Intrauterine programming of bone. Part 1: alteration of the osteogenic environment. Osteoporos Int. 2008;19(2):147–56.PubMedCrossRefGoogle Scholar
  36. 36.
    Hsu YH, Kiel DP. Clinical review: genome-wide association studies of skeletal phenotypes: what we have learned and where we are headed. J Clin Endocrinol Metab. 2012;97:E1958–77.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Richards JB, Zheng HF, Spector TD. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet. 2012;13:576–88.PubMedCrossRefGoogle Scholar
  38. 38.
    Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Godfrey K, Walker-Bone K, Robinson S, et al. Neonatal bone mass: influence of parental birth weight, maternal smoking, body composition and activity during pregnancy. J Bone Miner Res. 2001;16(9):1694–703.PubMedCrossRefGoogle Scholar
  40. 40.
    Jones G, Hynes KL, Dwyer T. The association between breastfeeding, maternal smoking in utero, and birth weight with bone mass and fractures in adolescents: a16-year longitudinal study. Osteoporos Int. 2013;24(5):1605–11.PubMedCrossRefGoogle Scholar
  41. 41.
    Jones G, Dwyer T. Birth weight, birth length, and bone density in prepubertal children: evidence for an association that may be mediated by genetic factors. Calcif Tissue Int. 2000;67:304–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Gale CR, Martyn CN, Kellingray S, Eastell R, Cooper C. Intrauterine programming of adult body composition. J Clin Endocrinol Metab. 2001;86:247–52.Google Scholar
  43. 43.
    Widdowson EM, Southgate DA, Hey E. Fetal growth and body composition. In: Linblad BS, editor. Perinatal nutrition. New York, NY: Academic; 1988. p. 3–14.Google Scholar
  44. 44.
    Salle BL, Delvin EE, Lapillone A, Bishop NJ, Glorieux FH. Perinatal metabolism of vitamin D. Am J Clin Nutr. 2000;71:1317S–22.PubMedGoogle Scholar
  45. 45.
    Ziegler EE, Am O’D, Nelson SE, Fomon SJ. Body composition of the reference fetus. Growth. 1976;40:329–41.PubMedGoogle Scholar
  46. 46.
    Hollis BW, Pittard WB. Evaluation of the total fetomaternal vitamin D relationships at term: evidence for racial differences. J Clin Endocrinol Metab. 1984;59:652–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Backstrom MC, Maki R, Kuusela AL, et al. Randomised controlled trial of vitamin D supplementation on bone density and biochemical indices in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1999;80:F161–6.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Pohlandt F, Mathers N. Bone mineral content of appropriate and light for gestational age preterm and term newborn infants. Acta Paediatr Scand. 1989;78:835–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Koo WWK, Walters J, Bush AJ, Chesney RW, Carlson SE. Dual energy X-ray absorptiometry studies of bone mineral status in newborn infants. J Bone Miner Res. 1996;11:997–1002.PubMedCrossRefGoogle Scholar
  50. 50.
    Rigo J, Nyamugabo K, Picaud JC, et al. Reference values of body composition obtained by dual energy X-ray absorptiometery in preterm and term neonates. J Pediatr Gastroenterol Nutr. 1998;25:184–90.CrossRefGoogle Scholar
  51. 51.
    Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: National Academy Press. 2011 Available at
  52. 52.
    Canadian Paediatric Society, Position statement [Principal author: J. Godel]. Vitamin D supplementation: recommendations for Canadian mothers and infants. Paediatr Child Health 2007; 12(7):583–9. Available at:
  53. 53.
    American Endocrine Society. Guidelines for the evaluation, treatment and prevention of vitamin D deficiency. 2011. Available at:
  54. 54.
    Rosen CJ, Abrams SA, Aloia JF, et al. IOM committee members respond to Endocrine Society vitamin D guideline. J Clin Endocrinol Metab. 2012;97(4):1146–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Hollis BW, Johnson D, Hulsey TC, Ebeling M, Wagner CL. Vitamin D supplementation during pregnancy: double blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res. 2011;10:2341–57.CrossRefGoogle Scholar
  56. 56.
    Wagner CL, McNeil RB, Johnson DD, Hulsey TC, Ebeling M, Robinson C, Hamilton SA, Hollis BW. Health characteristics and outcomes of two randomized vitamin D supplementation trials during pregnancy: a combined analysis. J Steroid Biochem Mol Biol. 2013;136:313–20.PubMedCrossRefGoogle Scholar
  57. 57.
    Prentice A, Jarjou LM, Goldberg GR, Bennett J, Cole TJ, Schoenmakers I. Maternal plasma 25-hydroxyvitamin D concentration and birth weight, growth and bone mineral accretion of Gambian infants. Acta Paediatr. 2009;98:1360–2.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Basile LA, Taylor SN, Wagner CL, Horst RL, Hollis BW. The effect of high-dose vitamin D supplementation on serum vitamin D levels and milk calcium concentration in lactating women and their infants. Breastfeed Med. 2006;1(1):27–35.PubMedCrossRefGoogle Scholar
  59. 59.
    Abrams SA, Committee on Nutrition, AAP. Calcium and vitamin D requirements of enterally fed preterm infants. Pediatrics. 2013;131(5):e1676–83.PubMedCrossRefGoogle Scholar
  60. 60.
    Agostini C, Buonocore G, Carnielli VP, European Society for Pediatric Gastroenterology, Committee on Nutrition (ESPGHAN), et al. Enteral nutrient supply for preterm infants: commentary from the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50:85–91.CrossRefGoogle Scholar
  61. 61.
    Atkinson SA, Tsang RC. Calcium, magnesium, phosphorus and vitamin D. In: Uauy R, Tsang RC, Zlotkin S, editors. Nutrition of the preterm infant. Scientific basis and practical guidelines. Cincinnati, OH: Digital Educational Publishing; 2005.Google Scholar
  62. 62.
    Fewtrell MS, Prentice A, Jones SC, et al. Bone mineralization and turnover in preterm infants at 8–12 years of age: the effect of early diet. J Bone Miner Res. 1999;14:810–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Backstrom MC, Maki R, Kuusela AL, et al. The long-term effect of early mineral, vitamin D, and breast milk intake on bone mineral status in 9- to 11-year-old children born prematurely. J Pediatr Gastroenterol Nutr. 1999;29:575–82.PubMedCrossRefGoogle Scholar
  64. 64.
    Institute of Medicine, Food and Nutrition Board. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press; 1997.Google Scholar
  65. 65.
    Wagner CL, Greer FR. American Academy of Pediatrics Section on Breastfeeding: American Academy of Pediatrics Committee on Nutrition. Prevention of rickets and vitamin D deficiency in infants, children and adolescents. Pediatrics. 2008;122:1142–52.PubMedCrossRefGoogle Scholar
  66. 66.
    Högler W, Baumann U, Kelly D. Growth and bone health in chronic liver disease and following liver transplantation in children. Pediatr Endocrinol Rev. 2010;7(3):266–74.PubMedGoogle Scholar
  67. 67.
    Lee GH, Benner D, Regidor DL, Kalantar-Zadeh K. Impact of kidney bone disease and its management on survival of patients on dialysis. J Ren Nutr. 2007;17(1):38–44.PubMedCrossRefGoogle Scholar
  68. 68.
    Pappa HM, Grand RJ, Gordon CM. Report on the vitamin D status of adult and pediatric patients with inflammatory bowel disease and its significance for bone health and disease. Inflamm Bowel Dis. 2006;12(12):1162–74.PubMedCrossRefGoogle Scholar
  69. 69.
    Alemzadeh R, Kichler J, Babar G, Calhoun M. Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season. Metabolism. 2008;57(2):183–91.PubMedCrossRefGoogle Scholar
  70. 70.
    Taha SA, Dost SM, Sedrani SH. 25-Hydroxyvitamin D and total calcium: extraordinarily low plasma concentrations in Saudi mothers and their neonates. Pediatr Res. 1984;18(8):739–41.PubMedCrossRefGoogle Scholar
  71. 71.
    Weiler HA, Leslie WD, Krahn J, Steiman PW, Metge CJ. Canadian Aboriginal women have a higher prevalence of vitamin D deficiency than non-Aboriginal women despite similar dietary vitamin D intakes. J Nutr. 2007;137:461–5.PubMedGoogle Scholar
  72. 72.
    Koo WWK, Bush AJ, Walters J, Carlson SE. Postnatal development of bone mineral status during infancy. J Am Coll Nutr. 1998;17:65–70.PubMedCrossRefGoogle Scholar
  73. 73.
    Specker BL, Beck A, Kalkwarf H, Ho M. Randomized trial of varying mineral intake on total body bone mineral accretion during the first year of life. Pediatrics. 1999;99:e12.CrossRefGoogle Scholar
  74. 74.
    Koo WWK. Body composition measurements in infants. In: Yasumura S, editor. 5th International symposium on In Vivo body composition studies, Ann N Y Acad Sci, vol. 904. New York, NY: Academy of Science; 2000. p. 383–92.Google Scholar
  75. 75.
    Lapillonne A, Braillon P, Claris O, Chatelain PG, Delmas PD, Salle BL. Body composition in appropriate and in small for gestational infants. Acta Pediatr. 1997;86:196–200.CrossRefGoogle Scholar
  76. 76.
    Butte NF, Wong WW, Hopkinson JM, Smith EO, Ellis KJ. Infant feeding mode affects early growth and body composition. Pediatrics. 2000;106(6):1355–66.PubMedCrossRefGoogle Scholar
  77. 77.
    Wauben I, Atkinson SA, Grad TL, Shah JK, Paes B. Moderate nutrient supplementation to mother’s milk for preterm infants supports adequate bone mass and short-term growth. A randomized controlled trial. Am J Clin Nutr. 1998;67:465–72.PubMedGoogle Scholar
  78. 78.
    Lapillone AA, Glorieux FH, Salle B, et al. Mineral balance and whole body bone mineral content in very-low-birth-weight infants. Acta Pediatr Suppl. 1994;405:117–22.CrossRefGoogle Scholar
  79. 79.
    Faerk J, Petersen S, Peitersen B, Fleischer MK. Diet and bone mineral content at term in premature infants. Pediatr Res. 2000;47:148–56.PubMedCrossRefGoogle Scholar
  80. 80.
    Atkinson SA, Randall-Simpson J. Factors influencing body composition of premature infants at term-adjusted age. In: Yasumura S, editor. 5th International symposium on In Vivo body composition studies, Ann N Y Acad Sci, vol. 904. New York, NY: Academy of Science; 2000. p. 393–400.Google Scholar
  81. 81.
    Kuschel CA, Harding JE. Multicomponent fortified human milk to promote growth in preterm infants (Cochrane Review). In: The Cochrane Library, Issue 2, 1999. Update Software, Oxford.Google Scholar
  82. 82.
    Moyer-Mileur L, Leutkemeler M, Boomer L, Chan GM. Effect of physical activity on bone mineralization in premature infants. J Pediatr. 1995;125:620–3.CrossRefGoogle Scholar
  83. 83.
    Moyer-Milleur L, Brunstetter V, McNaught TP, Gill G, Chan GM. Daily physical activity program increases bone mineralization and growth in preterm very low birth weight infants. Pediatrics. 2000;106:1082–92.Google Scholar
  84. 84.
    Nemet D, Dolfin T, Litmanovitz I, Shainkin-Kestenbaum R, Lis M, Eliakim A. Evidence for exercise-induced bone formation in premature infants. Int J Sports Med. 2002;23:1–4.CrossRefGoogle Scholar
  85. 85.
    Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res. 2003;18:885–92.PubMedCrossRefGoogle Scholar
  86. 86.
    Wauben IPM, Atkinson SA, Shah JK, Paes B. Growth and body composition of preterm infants: influence of nutrient fortification of mother’s milk in hospital and breast feeding post-hospital discharge. Acta Paediatr. 1998;87:780–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Brunton JA, Saigal S Atkinson S. Nutrient intake similar to recommended values does not result in catch-up growth by 12 mo of age in very low birth weight infant (VLBW) with bronchopulmonary dysplasia (BPD). Am J Clin Nutr 1997; 55(i), Abstr. 102.Google Scholar
  88. 88.
    Brunton JA, Saigal S, Atkinson SA. Growth and body composition in infants with bronchopulmonary dysplasia up to 3 months corrected age: a randomized trial of a high-energy nutrient-enriched formula fed after hospital discharge. J Pediatr. 1998;133:340–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Bishop NJ, King FJ, Lucas A. Increased bone mineral content of preterm babies fed with a nutrient enriched formula after discharge from hospital. Arch Dis Child. 1993;68:573–8.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Rubinacci A, Sirtori P, Moro G, Galli L, Minoli I, Tessari L. Is there an impact of birth weight and early life nutrition on bone mineral content in preterm born infants and children? Acta Pediatr. 1993;82:711–3.CrossRefGoogle Scholar
  91. 91.
    Fewtrell M. Does early nutrition program later bone health in preterm infants? Am J Clin Nutr. 2011;94(6):1970S–3.Google Scholar
  92. 92.
    Weiler HA, Yuen CK, Seshia MM. Growth and bone mineralization of young adults weighing less than 1500 g birth weight. J Ear Hum Dev. 2002;67:101–12.CrossRefGoogle Scholar
  93. 93.
    Wang D, VanderMeulen J, Atkinson SA. Early life factors predict abnormal growth and bone accretion at pre-puberty in former premature infants with/without neonatal dexamethasone exposure. Pediatr Res. 2007;61(1):111–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Pediatrics, Faculty of Health SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations