Advertisement

Nutrition Counseling for Skeletal Health

  • Atheer A. Yacoub
  • Wahida KarmallyEmail author
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Nutrition plays an important role in skeletal health throughout the life cycle. This chapter addresses evidence-based nutrition recommendations that can be used to promote skeletal health. Maintaining bone health is a significant concern in the USA; healthful lifestyle is an opportunity to promote bone health. The total diet or overall pattern of food consumed is the most important focus of healthy eating (Freeland-Graves and Nitzke, J Acad Nutr Diet 113:307–317, 2013). A healthful dietary pattern is associated with prevention of chronic diseases as well promoting skeletal health.

The Surgeon General’s report on bone health and osteoporosis recommendations include consuming recommended amounts of calcium and vitamin D, maintaining a healthful body weight, and being physically active, along with minimizing the risk of falls (USDHHS Surgeon General, 2004).

Meeting calcium recommendations and weight bearing physical activity build strong bones, optimizes bone mass, and may reduce the risk of osteoporosis later in life. Nutrition counseling using the Nutrition Care Process is an effective structure for tailoring evidenced-based recommendations to an individual’s unique needs in the prevention, treatment, and maintenance of health and quality of life into old age.

Keywords

Yacoub Karmally Skeletal health Nutrition counseling 

References

  1. 1.
    Institute of Medicine. Dietary reference intake for calcium and vitamin D. Washington, DC: National Academies Press; 2010. http://www.iom.edu/~/media/Files/Report%20Files/2010/Dietary-Reference-Intakes-for-Calcium-and-Vitamin-D/Vitamin%20D%20and%20Calcium%202010%20Report%20Brief.pdf.Google Scholar
  2. 2.
    Levis S, Lagari V. The role of diet in osteoporosis prevention and management. Curr Osteoporos Rep. 2012;10:296–302. doi: 10.1007/s11914-012-0119-y.PubMedCrossRefGoogle Scholar
  3. 3.
    U.S. Department of Agriculture, Agricultural Research Service. 2012. USDA National Nutrient Database for Standard Reference, Release 25. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/ba/bhnrc/ndl.Google Scholar
  4. 4.
    Braegger C, Campoy C, Colomb V, Decsi T, Domellof M, Fewtrell M, et al. Vitamin D in the healthy European paediatric population. J Pediatr Gastroenterol Nutr. 2013;56:692–701. doi: 10.1097/MPG.0b013e31828f3c05.PubMedCrossRefGoogle Scholar
  5. 5.
    Sinha A, Cheetham TD, Pearce SH. Prevention and treatment of vitamin D deficiency. Calcif Tissue Int. 2013;92:207–15. doi: 10.1007/s00223-012-9663-9.PubMedCrossRefGoogle Scholar
  6. 6.
    Moyer VA. Vitamin D, and calcium supplementation to prevent fractures in adults: U.S. Preventive Service Task Force recommendation statement. Ann Intern Med. 2013;158:691–6. doi: 10.7326/0003-4819-158-9-201305070-00603.PubMedGoogle Scholar
  7. 7.
    Vitamin D and calcium: structured abstract. 2010. Agency for Healthcare Research and Quality, Rockville, MD. http://www.ahrq.gov/research/findings/evidence-based-reports/vitadcaltp.html. Accessed 22 July 2013.Google Scholar
  8. 8.
    Academy of Nutrition and Dietetics Evidence Analysis Library. What is the evidence regarding the effect of supplemental vitamin D on bone density in post-menopausal women and older adult men? 2008. http://andevidencelibrary.com/conclusion.cfm?conclusion_statement_id=251041. Accessed 1 Aug 2013.
  9. 9.
    Penido MG, Alon US. Phosphate homeostasis and its role in bone health. Pediatr Nephrol. 2012;27:2039–48. doi: 10.1007/s00467-012-2175-z.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Ahmadieh H, Arabi A. Vitamins and bone health: beyond calcium and vitamin D. Nutr Rev. 2011;69:584–98. doi: 10.1111/j.1753-4887.2011.00372.x.PubMedCrossRefGoogle Scholar
  11. 11.
    Price CT, Langford JR, Liporace FA. Essential nutrients for bone health and a review of their availability in the average North American diet. Open Orthop J. 2012;6:143–9. doi: 10.2174/1874325001206010143.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Palmer CA, Gilbert JA. Position of the Academy of Nutrition and Dietetics: the impact of fluoride on health. J Acad Nutr Diet. 2012;112:1443–53. doi: 10.1016/j.jand.2012.07.012.PubMedCrossRefGoogle Scholar
  13. 13.
    Gunn CA, Weber JL, Kruger MC. Midlife women, bone health, vegetables, herbs and fruit study. The Scarborough Fair study protocol. BMC Public Health. 2013;13:23. doi: 10.1186/1471-2458-13-23.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Orchard TS, Ing SW, Lu B, Belury MA, Johnson K, Wactawski-Wende J, et al. The association of red blood cell n-3 and n-6 fatty acids with bone mineral density and hip fracture risk in the women’s health initiative. J Bone Miner Res. 2013;28:505–15. doi: 10.1002/jbmr.1772.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Mangano KM, Sahni S, Kerstetter JE, Kenny AM, Hannan MT. Polyunsaturated fatty acids and their relation with bone and muscle health in adults. Curr Osteoporos Rep. 2013;11(3):203–12.PubMedCrossRefGoogle Scholar
  16. 16.
    U.S. Department of Agriculture, U.S. Department of Health and Human Services. Dietary guidelines for Americans, 2010. Washington (DC): U.S. Government Printing Office; 2010. http://www.health.gov/dietaryguidelines/dga2010/dietaryguidelines2010.pdf.Google Scholar
  17. 17.
    Kelly OJ, Gilman JC, Kim Y, Ilich JZ. Long-chain polyunsaturated fatty acids may mutually benefit obesity and osteoporosis. Nutr Res. 2013;33:521–33. doi: 10.1016/j.nutres.2013.04.012.PubMedCrossRefGoogle Scholar
  18. 18.
    American Heart Association. Fish and Omega-3 fatty acids. 2013. http://www.heart.org/HEARTORG/GettingHealthy/NutritionCenter/HealthyDietGoals/Fish-and-Omega-3-Fatty-Acids_UCM_303248_Article.jsp. Accessed 7 July 2013.
  19. 19.
    Hallström H, Melhus H, Glynn A, Lind L, Syvänen AC, Michaëlsson K. Coffee consumption and CYP1A2 genotype in relation to bone mineral density of the proximal femur in elderly men and women: a cohort study. Nutr Metab (Lond). 2010;7:12. doi: 10.1186/1743-7075-7-12.CrossRefGoogle Scholar
  20. 20.
    Liu H, Yao K, Zhang W, Zhou J, Wu T, He C. Coffee consumption and risk of fractures: a meta-analysis. Arch Med Sci. 2012;8:776–83. doi: 10.5114/aoms.2012.31612.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Hallström H, Byberg L, Glynn A, Lemming EW, Wolk A, Michaëlsson K. Long-term coffee consumption in relation to fracture risk and bone mineral density in women. Am J Epidemiol. 2013;178(6):898–909.PubMedCrossRefGoogle Scholar
  22. 22.
    Rivas A, Romero A, Mariscal-Arcas M, Monteagudo C, Feriche B, Lorenzo ML, et al. Mediterranean diet and bone mineral density in two age groups of women. Int J Food Sci Nutr. 2013;64(2):155–61. doi: 10.3109/09637486.2012.718743.PubMedCrossRefGoogle Scholar
  23. 23.
    Kontogianni MD, Melistas L, Yannakoulia M, Malagaris I, Panagiotakos DB, Yiannakouris N. Association between dietary patterns and indices of bone mass in a sample of Mediterranean women. Nutrition. 2009;25:165–71. doi: 10.1016/j.nut.2008.07.019.PubMedCrossRefGoogle Scholar
  24. 24.
    McNaughton SA, Wattanapenpaiboon N, Wark JD, Nowson CA. An energy-dense, nutrient-poor dietary pattern is inversely associated with bone health in women. J Nutr. 2011;141:1516–23. doi: 10.3945/jn.111.138271.PubMedCrossRefGoogle Scholar
  25. 25.
    Keith JN, Nicholls J, Reed A, Kafer K, Miller GD. The prevalence of self-reported lactose intolerance and the consumption of dairy foods among African-American adults are less than expected. J Natl Med Assoc. 2011;103:36–45.PubMedGoogle Scholar
  26. 26.
    Savaiano D. Lactose intolerance: an unnecessary risk for low bone density. Nestle Nutr Workshop Ser Pediatr Program. 2011;67:161–71. doi: 10.1159/000325582.PubMedCrossRefGoogle Scholar
  27. 27.
    Bredella MA, Gill CM, Gerweck AV, Landa MG, Kumar V, Daley SM, et al. Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology. 2013. doi: 10.1148/radiol.13130375.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Academy of Nutrition and Dietetics. Nutrition care process SNAPshots. 2013. http://www.eatright.org/healthProfessionals/content.aspx?id = 7077. Accessed 10 Apr 2013.
  29. 29.
    Di Noia J, Prochaska JO. Dietary stages of change and decisional balance: a meta-analytic review. Am J Health Behav. 2010;34:618–32.PubMedGoogle Scholar
  30. 30.
    Resnicow K, McMaster F. Motivational interviewing: moving from why to how with autonomy support. Int J Behav Nutr Phys Act. 2012;9:19. doi: 10.1186/1479-5868-9-19.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Taylor C, Lamparello B, Kruczek K, Anderson EJ, Hubbard J, Misra M. Validation of a food frequency questionnaire for determining calcium and vitamin D intake by adolescent girls with anorexia nervosa. J Am Diet Assoc. 2009;109:479–85. doi: 10.1016/j.jada.2008.11.025.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Spahn JM, Reeves RS, Keim KS, Laquatra I, Kellogg M, Jortberg B, et al. State of the evidence regarding behavior change theories and strategies in nutrition counseling to facilitate health and food behavior change. J Am Diet Assoc. 2010;110:879–91. doi: 10.1016/j.jada.2010.03.021.PubMedCrossRefGoogle Scholar
  33. 33.
    Etcheverry P, Grusak MA, Fleige LE. Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E. Front Physiol. 2012;3:317. doi: 10.3389/fphys.2012.00317.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Yang J, Punshon T, Geurinot ML, Hirschi KD. Plant calcium content: ready to remodel. Nutrients. 2012;4:1120–36. doi: 10.3390/nu4081120.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Fulgoni III VL, Keast DR, Auestad N, Quann EE. Nutrients from dairy foods are difficult to replace in diets of Americans: food pattern modeling and an analyses of the National Health and Nutrition Examination Survey 2003–2006. Nutr Res. 2011;31:759–65. doi: 10.1016/j.nutres.2011.09.017.PubMedCrossRefGoogle Scholar
  36. 36.
    Thomson P, Duerksen DR. Vitamin D deficiency in patients receiving home parenteral nutrition. J Parenter Enteral Nutr. 2011;35:499–504. doi: 10.1177/0148607110381269.CrossRefGoogle Scholar
  37. 37.
    Dibb M, Teubner A, Theis V, Shaffer J, Lal S. Review article: the management of long-term parenteral nutrition. Aliment Pharmacol Ther. 2013;37:587–603. doi: 10.1111/apt.12209.PubMedCrossRefGoogle Scholar
  38. 38.
    Ferrone M, Geraci M. A review of the relationship between parenteral nutrition and metabolic bone disease. Nutr Clin Pract. 2007;22:329–39. doi: 10.1177/0115426507022003329.PubMedCrossRefGoogle Scholar
  39. 39.
    Pereira-da-Silva L, Costa A, Pereira L, Filipe A, Virella D, Leal E, et al. Early high calcium and phosphorus intake by parenteral nutrition prevents short-term bone strength decline in preterm infants. J Pediatr Gastroenterol Nutr. 2011;52:203–9. doi: 10.1097/MPG.0b013e3181f8b295.PubMedCrossRefGoogle Scholar
  40. 40.
    Hacker AN, Fung EB, King JC. Role of calcium during pregnancy: maternal and fetal needs. Nutr Rev. 2012;70:397–409. doi: 10.1111/j.1753-4887.2012.00491.x.PubMedCrossRefGoogle Scholar
  41. 41.
    Kovacs CS. Maternal vitamin D deficiency: fetal and neonatal implications. Semin Fetal Neonatal Med. 2013;18:129–35. doi: 10.1016/j.siny.2013.01.005.CrossRefGoogle Scholar
  42. 42.
    Thorne-Lyman A, Fawzi WW. Vitamin D during pregnancy and maternal, neonatal and infant health outcomes: a systematic review and meta-analysis. Paediatr Perinat Epidemiol. 2012;26 Suppl 1:75–90. doi: 10.1111/j.1365-3016.2012.01283.x.PubMedCrossRefGoogle Scholar
  43. 43.
    Nieves JW, Melsop K, Curtis M, Kelsey JL, Bachrach LK, Greendale G, et al. Nutritional factors that influence change in bone density and stress fracture risk among young female cross-country runners. J Bone Miner Res. 2010;2:740–50. doi: 10.1016/j.pmrj.2010.04.020.Google Scholar
  44. 44.
    Brownawell AM, Caers W, Gibson GR, Kendall CW, Lewis KD, Ringel Y, et al. Prebiotics and the health benefits of fiber: current regulatory status, future research, and goals. J Nutr. 2012;142:962–74. doi: 10.3945/jn.112.158147.PubMedCrossRefGoogle Scholar
  45. 45.
    Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, et al. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr. 2005;82:471–6.PubMedGoogle Scholar
  46. 46.
    Bone Health and Osteoporosis: a report of the surgeon general. Rockville, MD: US Department of Health and Human Services Office of the Surgeon General. 2004.Google Scholar
  47. 47.
    Calderon-Garcia JF, Moran JM, Roncero-Martin R, Rey-Sanchez P, Rodriguez-Velasco FJ, Pedrera-Zamorano JD. Dietary habits, nutrients and bone mass in Spanish premenopausal women: the contribution of fish to better bone health. Nutrients. 2012;5(1):10–22. doi: 10.3390/nu5010010. PubMed PMID: 23271510; PubMed Central PMCID: PMC3571635.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Freeland-Graves JH, Nitzke S. Position of the Academy of Nutrition and Dietetics: total diet approach to healthy eating. J Acad Nutr Diet. 2013;113:307–17. doi: 10.1016/j.jand.2012.12.013.PubMedCrossRefGoogle Scholar
  49. 49.
    Lagari VS, Levis S. Phytoestrogens for menopausal bone loss and climacteric symptoms. J Steroid Biochem Mol Biol. 2012. pii:S0960-0760(12)00254-3.doi:0.1016/j.jsbmb.2012.12.002.
  50. 50.
    Mithal A, Bonjour JP, Boonen S, Burckhardt P, Degens H, El Hajj Fuleihan G, et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos Int. 2013;24(5):1555–66. doi: 10.1007/s00198-012-2236-y. Epub 2012 Dec 18. Review. PubMed PMID: 23247327.PubMedCrossRefGoogle Scholar
  51. 51.
    Nieves JW. Skeletal effects of nutrients and nutraceuticals, beyond calcium and vitamin D. Osteoporos Int. 2013;24(3):771–86. doi: 10.1007/s00198-012-2214-4. Epub 2012 Nov 14. Review. PubMed PMID: 23152094.PubMedCrossRefGoogle Scholar
  52. 52.
    Strohle A, Waldmann A, Koschizke J, Leitzmann C, Hahn A. Diet-dependent net endogenous acid load of vegan diets in relation to food groups and bone health-related nutrients: results from the German Vegan Study. Ann Nutr Metab. 2011;59:117–26. doi: 10.1159/000331572.PubMedCrossRefGoogle Scholar
  53. 53.
    Looker AC, Melton III LJ, Harris TB, Borrud LG, Shepherd JA. Prevalence and trends in low femur bone density among older US adults: NHANES 2005–2006 compared with NHANES III. J Bone Miner Res. 2010;25(1):64–71. doi: 10.1359/jbmr.090706. PubMed PMID: 19580459; PubMed Central PMCID: PMC3312738.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Krupp D, Ströhle A, Remer T. Dietary acid load and risk of hypertension. Am J Clin Nutr. 2012;96(4):942–3. author reply 943-4. PubMed PMID: 22996624.PubMedCrossRefGoogle Scholar
  55. 55.
    Heppe DH, Medina-Gomez C, Hofman A, Franco OH, Rivadeneira F, Jaddoe VW. Maternal first-trimester diet and childhood bone mass: the Generation R Study. Am J Clin Nutr. 2013;98(1):224–32. doi: 10.3945/ajcn.112.051052. Epub 2013 May 29. PubMed PMID: 23719545.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Irving Institute for Clinical and Translational ResearchColumbia UniversityNew YorkUSA

Personalised recommendations