Advertisement

Novel Molecules

  • Valeria Lourdes Vukelic
  • Marcelo Orias
Chapter
Part of the Clinical Hypertension and Vascular Diseases book series (CHVD)

Abstract

Novel approaches and drugs to improve hypertension treatment are permanently under investigation. Human recombinant renalase is being tested in animal models and new options to block the renin–angiotensin–aldosterone axis such as renin inhibitors, angiotensin II type 2 receptor agonists, angiotensin vaccines and aldosterone synthase inhibitors are under scrutiny with variable results so far. Interventions in different hormones and autacoids, enzymatic and cellular signalling pathways like vasopeptidase inhibitors, activators and stimulators of soluble guanylyl cyclase, soluble epoxide hydrolase inhibitors and endothelin receptor antagonists, among others, are all work in progress. Objectives with newer agents are to optimize blood pressure control and minimize end-organ damage beyond what has been achieved so far. Adverse effects will limit some of these new therapeutic approaches.

Keywords

Hypertension Drugs Angiotensin Aldosterone Renalase Renin Prostaglandin Nitric oxide Endothelin 

Abbreviations

C21

Compound 21

cGMP

Cyclic guanosine 3′,5′-monophosphate

COX

Cyclooxygenase

CYP

Cytochrome P-450

ET-1

Endothelin 1

ET-2

Endothelin 2

ET-3

Endothelin 3

ETA

Endothelin receptor type A

ETB

Endothelin receptor type B

ETEs

Epoxyeicosatrienoic acids

ETRA

Endothelin receptor antagonist

FDA

Food and Drug Administration

HETEs

Hydroxyeicosatetraenoic acids

KO

Knockout

LOX

Lipoxygenase

LTs

Leucotrienes

LXs

Lipoxins

MR

Mineralocorticoid receptors

NEP

Neutral endopeptidase

NO

Nitric oxide

sEH

Soluble epoxide hydrolase

sGC

Soluble guanylyl cyclase

References

  1. 1.
    Paulis L, Unger T. Novel therapeutic targets for hypertension. Nat Rev Cardiol. 2010;7(8):431–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Xu J, Wang P, Velazquez H, Yao X, Li Y, Wu Y, et al. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Ivest. 2005;115:1275–80.CrossRefGoogle Scholar
  3. 3.
    Desir GV, Tang L, Wang P, Li G, Sampaio Maia B, Quelhas-Santos J, et al. Renalase lowers ambulatory blood pressure by metabolizing circulating catecholamines. J Am Heart Assoc. 2012;1:e002634.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Wu Y, Xu J, Velazquez H, Wang P, Li G, Liu D, Sampaio-Maia B, Quelhas-Santos J, et al. Renalase deficiency aggravates ischemic myocardial damage. Kidney Int. 2011;79(8):853–60.CrossRefPubMedGoogle Scholar
  5. 5.
    Jiang W, Guo Y, Tan L, Tang X, Yang Q, Yang K. Impact of renal denervation on renalase expression in adult rats with spontaneous hypertension. Exp Ther Med. 2012;4(3):493–6.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Baraka A, El Ghotny S. Cardioprotective effect of renalase in 5/6 nephrectomized rats. J Cardiovasc Pharmacol Ther. 2012;17(4):412–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Desir GV, Wang L, Peixoto AJ. Human renalase: a review of its biology, function, and implications for hypertension. J Am Soc Hypertens. 2012;6(6):417–26.CrossRefPubMedGoogle Scholar
  8. 8.
    Tissot AC, Maurer P, Nussberger J, Sabat R, Pfister T, Ignatenko S, et al. Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomised, placebo-controlled phase IIa study. Lancet. 2008;371:821–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Nakagami F, Koriyama H, Nakagami H, Osako MK, Shimamura M, Kyutoku M, et al. Decrease in blood pressure and regression of cardiovascular complications by angiotensin II vaccine in mice. PLoS ONE. 2013;8(3):e60493.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Chen X, Qiu Z, Yang S, Ding D, Chen F, Zhou Y, et al. Effectiveness and safety of a therapeutic vaccine against angiotensin II receptor yype 1 in hypertensive animals. Hypertension. 2013;61:408–16.CrossRefPubMedGoogle Scholar
  11. 11.
    Foulquier S, Steckelingd UM, Unger T. Impact of the AT2 receptor agonist C21 on blood pressure and beyond. Curr Hypertens Rep. 2012;14:403–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Steckelings UM, Kaschina E, Unger T. The AT2 receptor-a matter of love and hate. Peptides. 2005;26:1401–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Rehman A, Leibowitz A, Yamamoto N, Rautureau Y, Paradise P, Schiffrin EL. Angiotensin type 2 receptor agonist compound 21 reduces vascular injury and myocardial fibrosis in stroke-prone spontaneously hypertensive rats. Hypertension. 2012;59:291–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Hilliard LM, Jones ES, Steckelings UM, Unger T, Widdop RE, Denton KM. Sex-specific influence of angiotensin type 2 receptor stimulation on renal function: a novel therapeutic target for hypertension. Hypertension. 2012;59:409–14.CrossRefPubMedGoogle Scholar
  15. 15.
    Trunet PF, Mueller P, Girard F, Aupetit B, Bhatnagar AS, Zognbi F, et al. Effects of fadrozole hydrochloride on aldosterone secretion in healthy male subjects. J Clin Endocrinol Metab. 1992;74:571–6.PubMedGoogle Scholar
  16. 16.
    Fiebeler A, Nussberger J, Shagdarsuren E, Rong S, Hilfenhaus G, Al-Saadi N, et al. Aldosterone synthase inhibitor ameliorates angiotensin II-induced organ damage. Circulation. 2005;111:3087–94.CrossRefPubMedGoogle Scholar
  17. 17.
    Calhoun DA, White WB, Krum H, Guo W, Bermann G, Trapani A, et al. Effects of a novel aldosterone synthase inhibitor for treatment of primary hypertension: results of a randomised, double-blind, placebo- and active-controlled phase 2 trial. Circulation. 2011;124:1945–55.CrossRefPubMedGoogle Scholar
  18. 18.
    Amar L, Azizi M, Menard J, Peyrard S, Watson C, Plouin PF. Aldosterone synthase inhibition with LCI699: a proof-of-concept study in patients with primary aldosteronism. Hypertension. 2010;56:831–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Azizi M, Amar L, Menard J. Aldosterone synthase inhibitions in humans. Nephrol Dial Transplant. 2013;28:36–43.CrossRefPubMedGoogle Scholar
  20. 20.
    Campbell JC. Vasopeptidase inhibition: a double-edged sword? Hypertension. 2003;41:383–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Ruilope LM, Dukat A, Bohm M, Lacourciere Y, Gong J, Lefkowitz MP. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet. 2010;375:1255–66.CrossRefPubMedGoogle Scholar
  22. 22.
    Unger T, Paulis L, Sica DA. Therapeutic perspectives in hypertension: novel means for renin-angiotensin-aldosterone system modulation and emerging device-based approaches. Eur Heart J. 2011;32: 2739–47.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Kostis JB, Packer M, Black HR, Schmieder R, Henry D, Levy E. Omapatrilat and enalapril in patients with hypertension: the omapatrilat cardiovascular treatment vs. enalapril (OCTAVE) trial. Am J Hypertens. 2004;17:103–111.CrossRefPubMedGoogle Scholar
  24. 24.
    Nossaman B, Pankey E, Kadowitz P. Stimulators and activators of soluble guanylate cyclase: review and potential therapeutic indications. Crit Care Res Pract. 2012;2012:290805.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Grimminger F, Weimann G, Frey R, Voswinckel R, Thamm M, Bölkow D, et al. First acute haemodynamic study of soluble guanylate cyclase stimulator riociguat in pulmonary hypertension. Eur Respir J. 2009;33(4):785–92.CrossRefPubMedGoogle Scholar
  26. 26.
    Imig JD. Epoxides and soluble epoxi hydrolase in cardiovascular physiology. Physiol Rev. 2011;92:101–30.CrossRefGoogle Scholar
  27. 27.
    Shen HC, Hammock BD. Discovery of inhibitors of soluble epoxi hydrolase: a target with multiple potential therapeutic indications. J Med Chem. 2012;55(5):1789–808.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Imig JD, Hammock BD. Soluble epoxi hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov. 2009;8(10):794–805.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Rautureau Y, Schiffrin EL. Endothelin in hypertension: an update. Curr Opin Nephrol Hypertens. 2012;21(2):128–36.CrossRefPubMedGoogle Scholar
  30. 30.
    Barton M, Yanagisawa M. Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol. 2008;86(8):485–98.CrossRefPubMedGoogle Scholar
  31. 31.
    Weber MA, Black H, Bakris G, Krum H, Linas S, Weiss R, et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374:1423–31.CrossRefPubMedGoogle Scholar
  32. 32.
    Bakris GL, Lindholm LH, Black H, Krum H, Linas S, Linseman JV, et al. Divergent results using clinic and ambulatory blood pressures: report of a darusentan-resistant hypertension trial. Hypertension. 2010;56:824–30.CrossRefPubMedGoogle Scholar
  33. 33.
    Dhaun N, MacIntyre IM, Kerr D, Melville V, Johnston NR, Haughie S, et al. Selective endothelin-a receptor antagonism reduces proteinuria, blood pressure, and arterial stiffness in chronic proteinuric kidney disease. Hypertension. 2011;57:772–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of NephrologySanatorio Allende CordobaCordobaArgentina

Personalised recommendations