Howler Monkeys pp 229-258 | Cite as
The Howler Monkey as a Model for Exploring Host-Gut Microbiota Interactions in Primates
Abstract
The mammalian gut microbiota is essential to many aspects of host physiology, including nutrition, metabolic activity, and immune homeostasis. Despite the existence of numerous studies of the impact of the gut microbiota on human health and disease, much work remains to be done to improve our understanding of the host-microbe relationship in nonhuman primates. Howler monkeys (Alouatta spp.) are highly dependent on the gut microbiota for the breakdown of plant structural carbohydrates, and in this chapter we use new data describing the gut microbiome of captive and wild black howler monkeys (A. pigra) to develop and test two models of host-microbe interactions and bioenergetics. Improving our understanding of how spatial and temporal fluctuations in diet affect the nonhuman primate gut microbiota, and how this in turn influences host nutrition and physiology, has important implications for the study of the role that the gut microbiota plays in primate ecology, health, and conservation.
Keywords
Gut microbiome Health Nutrition Growth ReproductionResumen
El papel de la microbiota intestinal es fundamental para muchos aspectos de la fisiología de los mamíferos, incluyendo la nutrición, la actividad metabólica y la homeostasis del sistema inmune. A pesar de la existencia de muchos estudios acerca de la microbiota intestinal humana debido a sus implicaciones para la salud, aún queda mucho por hacer para poder entender la relación huésped-microorganismos en primates no humanos. Los monos aulladores (Alouatta spp.) dependen de manera importante de los microbios intestinales para la digestión de los carbohidratos estructurales de las plantas. En este capítulo utilizamos nuevos datos sobre la composición de la microbiota de monos aulladores negros cautivos y silvestres (A. pigra) para desarrollar y poner a prueba dos modelos sobre las interacciones huésped-microbios desde un punto de vista ecológico y bioenergético. El análisis del efecto de las fluctuaciones espaciales y temporales de la dieta sobre la microbiota intestinal de los primates, y de cómo esto a su vez se refleja en la nutrición y fisiología del huésped, tiene implicaciones importantes para entender el papel de la microbiota en la ecología, salud y conservación de los primates.
Notes
Acknowledgments
We would like to thank A. Estrada and Universidad Nacional Autónoma de México for logistic support. Thanks are also due to R. Mackie for use of lab supplies and space at the University of Illinois. Research was carried out under permits from the Mexican environmental agencies, the Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), the Comisión Nacional de Áreas Naturales Protegidas (CONANP), and the Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). The Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA) in Mexico and the Center for Disease Control in the U.S. provided permits for sample transport. We acknowledge the helpful comments of P. Garber and one anonymous reviewer on this manuscript. This project was funded by the NSF grant #0935347 (HOMINID). Fieldwork and preliminary lab work were funded by grants from the University of Illinois (Beckman, Tinker, and the Program in Ecology, Evolution and Conservation Biology) to KRA. KRA was supported by an NSF Graduate Research Fellowship. 16S sequence data are available from the authors upon request.
References
- Aiello LC, Wells JCK (2002) Energetics and the evolution of the genus Homo. Annu Rev Anthropol 31:323–338Google Scholar
- Altmann J, Alberts S (1987) Body mass and growth rates in a wild primate population. Oecologia 72:15–20Google Scholar
- Altmann J, Samuels A (1992) Costs of maternal care: infant-carrying in baboons. Behav Ecol Sociobiol 29:391–398Google Scholar
- Altmann SA (2009) Fallback foods, eclectic omnivores, and the packaging problem. Am J Phys Anthropol 140:615–629PubMedGoogle Scholar
- Amato KR (2013) Black howler monkey (Alouatta pigra) nutrition: integrating the study of behavior, feeding ecology, and the gut microbial community. Ph.D. dissertation, Program in Ecology, Evolution and Conservation Biology, University of Illinois, UrbanaGoogle Scholar
- Amato KR, Yeoman CJ, Kent A, Carbonero F, Righini N, Estrada AE, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013) Habitat degradation impacts primate gastrointestinal microbiomes. ISME J 7: 1344-1353PubMedCentralPubMedGoogle Scholar
- Amato KR, Yeoman CJ, Kent A, Righini N, Estrada AE, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (in review) Habitat degradation impacts primate gastrointestinal microbiomes.Google Scholar
- Armougom F, Henry M, Vialettes B, Raccah D, Raoult D (2009) Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in aneroxic patients. PLoS One 4:e7125PubMedCentralPubMedGoogle Scholar
- Arroyo-Rodriguez V, Asensio N, Cristobal-Azkarate J (2008) Demography, life history and migrations in a Mexican mantled howler group in a rainforest fragment. Am J Primatol 70:114–118PubMedGoogle Scholar
- Arroyo-Rodriguez V, Dias PAD (2010) Effects of habitat fragmentation and disturbance on howler monkeys: a review. Am J Primatol 72:1–16PubMedGoogle Scholar
- Bailey M, Coe CL (1999) Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 35:146–155PubMedGoogle Scholar
- Barboza PS, Parker KL, Hume ID (2009) Integrative wildlife nutrition. Springer, BerlinGoogle Scholar
- Bauer E, Williams BA, Smidt H, Verstegen MW, Mosenthin R (2006) Influence of the gastrointestinal microbiota on development of the immune system in young animals. Curr Issues Intest Microbiol 7:35–51PubMedGoogle Scholar
- Behie AM, Pavelka MS (2005) The short-term effects of a hurricane on the diet and activity of black howlers (Alouatta pigra) in Monkey River, Belize. Folia Primatol 76:1–9PubMedGoogle Scholar
- Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua K, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107:18933–18938PubMedCentralPubMedGoogle Scholar
- Benveniste J, Lespinats G, Adam C, Salomon JC (1971a) Immunoglobulins in intact, immunized, and contaminated axenic mice: study of serum IgA. J Immunol 107:1647–1655PubMedGoogle Scholar
- Benveniste J, Lespinats G, Salomon JC (1971b) Serum and secretory IgA in axenic and holoxenic mice. J Immunol 108:1656–1662Google Scholar
- Bicca-Marques JC (2003) How do howler monkeys cope with habitat fragmentation? In: Marsh LK (ed) Primates in Fragments: Ecology and Conservation Kluwer Academic, New YorkGoogle Scholar
- Bjorkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S (2009) Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One 4:e6958PubMedCentralPubMedGoogle Scholar
- Bo X, Zun-Xi H, Xiao-Yan W, Run-Chi G, Xiang-Hua T, Yue-Lin M, Yun-Juan Y, Hui S, Li-Da Z (2010) Phylogenetic analysis of the fecal flora of the wild pygmy loris. Am J Primatol 72:699–706PubMedGoogle Scholar
- Bonilla-Sanchez YM, Serio-Silva JC, Pozo-Montuy G, Chapman CA (2012) Howlers are able to survive in Eucalyptus plantations where remnant and regenerating vegetation is available. Int J Primatol 33:233–245Google Scholar
- Bovee-Oudenhoven IM, Wissink ML, Wouters JT, Van der Meer R (1999) Dietary calcium phosphate stimulates intestinal Lactobacilli and decreases the severity of a Salmonella infection in rats. J Nutr 129:607–612PubMedGoogle Scholar
- Bradley BJ, Stiller M, Doran-Sheehy DM, Harris T, Chapman CA, Vigilant L, Poinar H (2007) Plant DNA sequences from feces: potential means for assessing diets of wild primates. Am J Primatol 69:699–705PubMedGoogle Scholar
- Brourton MR, Perrin MR (1991) Comparative gut morphometrics of Vervet (Cercopithecus aethiops) and Samango (C. mitis erytharchus) monkeys. Z Saugetierkunde 56:65–71Google Scholar
- Buhnik-Rosenblau K, Danin-Poleg Y, Kashi Y (2011) Host genetics and gut microbiota. In: Rosenberg E, Gophna U (eds) Beneficial Microorganisms in Multicellular Life Forms. Springer, BerlinGoogle Scholar
- Carbonero F, Benefiel AC, Gaskins HR (2012) Contributions of the microbial hydrogen economy on colonic homeostasis. Nat Rev Gasteroenterol Hepatol 9:504–518Google Scholar
- Cavedon K, Leschine SB, Canale-Parola E (1990) Cellulase system of a free-living mesophilic Clostridium (strain C7). J Bacteriol 172:4222–4230PubMedCentralPubMedGoogle Scholar
- Chaney AL, Marbach EP (1962) Modified reagents for the determination of urea and ammonia. Clin Chem 8:130–132PubMedGoogle Scholar
- Chilvers BL, Wilkinson IS (2009) Diverse foraging strategies in lactating New Zealand sea lions. Marine Ecol 378:299–308Google Scholar
- Chivers DJ, Hladik CM (1980) Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. J Morphol 166:337–386PubMedGoogle Scholar
- Chivers DJ, Langer P (1994) Gut form and function: variations and terminology. In: Chivers DJ, Langer P (eds) The Digestive System in Mammals: Food, Form and Function. Cambridge University, CambridgeGoogle Scholar
- Clark KR, Gorley RN. (2006). PRIMER v6: User Manual/Tutorial. PRIMER-E, PlymouthGoogle Scholar
- Clayton JB, Kim HB, Glander K, Isaacson RE, Johnson TJ (2012) Fecal bacterial diversity of wild mantled howling monkeys (Alouatta palliata). Am J Phys Anthropol 147:116Google Scholar
- Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA (2012) An application of ecological theory toward an understanding of the human microbiome. Science 336:1255–1262PubMedCentralPubMedGoogle Scholar
- Cristobal-Azkarate J, Arroyo-Rodriguez V (2007) Diet and activity pattern of howler monkeys (Alouatta palliata) in Los Tuxtlas, Mexico: effects of habitat fragmentation and implications for conservation. Am J Primatol 69:1013–1029PubMedGoogle Scholar
- David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nat 505:559–566Google Scholar
- Deschner T, Kratzsch J, Hohmann G (2008) Urinary c-peptide as a method for monitoring body mass changes in captive bonobos (Pan paniscus). Horm Behav 54:620–626PubMedGoogle Scholar
- Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818PubMedGoogle Scholar
- Di Fiore A, Link A, Campbell C (2011) The atelines: behavioral and socioecological diversity in a New World radiation. In: Campbell C, Fuentes A, MacKinnon KC, Panger M, Bearder SK (eds) Primates in Perspective, vol 2. Oxford University, OxfordGoogle Scholar
- Dias PAD, Rangel-Negrin A, Canales-Espinosa D (2011) Effects of lactation on the time-budgets and foraging patterns of female black howlers (Alouatta pigra). Am J Phys Anthropol 145:137–146PubMedGoogle Scholar
- Donnet-Hughes A, Perez PF, Dore J, Leclerc M, Levenez F, Benyacoub J, Serrant P, Segura-Roggero I, Schiffrin EJ (2010) Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc Nutr Soc 69:407–415PubMedGoogle Scholar
- Dunn JC, Cristobal-Azkarate J, Vea JJ (2009) Differences in diet and activity pattern between two groups of Alouatta palliata associated with the availability of big trees and fruit of top food taxa. Am J Primatol 71:654–662PubMedGoogle Scholar
- Eckert KA, Hahn NE, Genz AK, Kitchen DM, Stuart MD, Averbeck GA, Stromberg BE, Markowitz H (2006) Coprological surveys of Alouatta pigra at two sites in Belize. Int J Primatol 27:227–238Google Scholar
- Edwards MS, Ullrey DE (1999) Effect of dietary fiber concentration on apparent digestibility and digesta passage in non-human primates. II. Hindgut- and foregut-fermenting folivores. Zoo Biol 18:537–549Google Scholar
- Erwin ES, Marco GJ, Emery EM (1961) Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J Dairy Sci 44:1768–1771Google Scholar
- Fedigan LM, Rose LM (1995) Interbirth interval variation in three sympatric species of neotropical monkey. Am J Primatol 37:9–24Google Scholar
- Fischer SG, Lerman LS (1979) Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell 16:191–200PubMedGoogle Scholar
- Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636PubMedCentralPubMedGoogle Scholar
- Flint HJ, Bayer EA (2008) Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Ann N Y Acad Sci 1125:280–288PubMedGoogle Scholar
- Flint HJ, Duncan SH, Louis P (2011) Impact of intestinal microbial communities upon health. In: Rosenberg E, Gophna U (eds) Beneficial Microorganims in Multicellular Life Forms. Springer, BerlinGoogle Scholar
- Fons M, Gomez A, Karjalainen T (2000) Mechanisms of colonisation resistance of the digestive tract. Part 2: bacteria/bacteria interactions. Microb Ecol Health Dis 12:240–246Google Scholar
- Foster JA, McVey Neufeld KA (2013) Gut-brain axis: How the microbiome influences anxiety and depression. Cell 36:305–312Google Scholar
- Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J (2010) Mood and gut feelings. Brain Behav Immun 24:9–16PubMedGoogle Scholar
- Frey JC, Rothman JM, Pell AN, Nizeyi JB, Cranfield MR, Angert ER (2006) Fecal bacterial diversity in a wild gorilla. Appl Environ Microbiol 72:3788–3792PubMedCentralPubMedGoogle Scholar
- Friswell MK, Gika H, Stratford IJ, Theodoridis G, Telfer B, Wilson ID, McBain AJ (2010) Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice. PLoS One 5:e8584PubMedCentralPubMedGoogle Scholar
- Fujita S, Kageyama T (2007) Polymerase chain reaction detection of Clostridium perfringens in feces from captive and wild chimpanzees, Pan troglodytes. J Med Primatol 36:25–32PubMedGoogle Scholar
- Girard-Buttoz C, Higham JP, Heistermann M, Wedegartner S, Maestripieri D, Engelhardt A (2011) Urinary c-peptide measurement as a marker of nutritional status in macaques. PLoS One 6:e18042PubMedCentralPubMedGoogle Scholar
- Grueter CC, Li DY, Ren BP, Wei FW, Xiang ZF, Van Schaik CP (2009) Fallback foods of temperate-living primates: a case study on snub-nosed monkeys. Am J Phys Anthropol 140:700–715PubMedGoogle Scholar
- Hammond KA, Kristan DM (2000) Responses to lactation and cold exposure by deer mice (Peromyscus maniculatus). Physiol Biochem Zool 73:547–556PubMedGoogle Scholar
- Harris TR, Chapman CA, Monfort SL (2009) Small folivorous primate groups exhibit behavioral and physiological effects of food scarcity. Behav Ecol 21:46–56Google Scholar
- Havel PJ (1998) Leptin production and action: relevance to energy balance in humans. Am J Clin Nutr 67:355–356PubMedGoogle Scholar
- Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6:S43–S45PubMedGoogle Scholar
- Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273PubMedGoogle Scholar
- Jaroszewska M, Wilczynska B (2006) Dimensions of surface area of alimentary canal of pregnant and lactating female common shrews. J Mammal 87:589–597Google Scholar
- Kau AL, Abern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336PubMedCentralPubMedGoogle Scholar
- Kay RNB, Davies AG (1994) Digestive physiology. In: Davies AG, Oates JF (eds) Digestive physiology. Cambridge University, CambridgeGoogle Scholar
- Kelaita M, Dias PAD, Aguilar Cucurachi MS, Canales-Espinosa D, Cortés-Ortiz L (2011) Impact of intrasexual selection on sexual dimorphism and testes size in the Mexican howler monkeys Alouatta palliata and A. pigra. Am J Phys Anthropol 146:179–187Google Scholar
- Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AGP, Pettersson S, Conway S (2003) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-g and RelA. Nat Immun 5:104–112Google Scholar
- Kisidayova S, Varadyova Z, Pristas P, Piknova M, Nigutova K, Petrzelkova KJ, Profousova I, Schovancova K, Kamler J, Modry D (2009) Effects of high- and low-fiber diets on fecal fermentation and fecal microbial populations of captive chimpanzees. Am J Primatol 71:548–557PubMedGoogle Scholar
- Kleiber M (1975) The fire of life: an introduction to animal energetics. Krieger, HuntingtonGoogle Scholar
- Kruszynskia YT, Home PD, Hanning I, Alberti K (1987) Basal and 24-h c-peptide and insulin secretion rate in normal man. Diabetology 30:16–21Google Scholar
- Lambert JE (1998) Primate digestion: interactions among anatomy, physiology, and feeding ecology. Evol Anthropol 7:8–20Google Scholar
- Lambert JE (2011) Primate nutritional ecology: feeding biology and diet at ecological and evolutionary scales. In: Campbell C, Fuentes A, MacKinnon KC, Panger M, Bearder SK (eds) Primates in Perspective, 2nd edn. Oxford University, New YorkGoogle Scholar
- Lambert JE, Fellner V (2012) In vitro fermentation of dietary carbohydrate consumed by african apes and monkeys: preliminary results for interpreting microbial and digestive strategy. Int J Primatol 33:263–281Google Scholar
- Lantz EL, Santymire RM, Murray CM, Heintz M, Lipende I, Travis DA, Lonsdorf EV (2011) Characterization of immunocompetence via immunoglobulin A in wild chimpanzees (Pan troglodytes schweinfurthii) at Gombe Stream National Park, Tanzania. Am J Primatol 73:52.Google Scholar
- Larimer SC, Fritzsche P, Song Z, Johnston J, Neumann K, Gattermann R, McPhee ME, Johnston RE (2011) Foraging behavior of golden hamsters (Mesocricetus auratus) in the wild. J Ethology 29:275–283Google Scholar
- Ley RE, Backhed F, Turnbaugh PJ, Lozupone C, Knight R, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075PubMedCentralPubMedGoogle Scholar
- Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008a) Evolution of mammals and their gut microbes. Science 320:1647–1651PubMedCentralPubMedGoogle Scholar
- Ley RE, Lozupone C, Hamady M, Knight R, Gordon HA (2008b) Worlds within worlds: evolution of the vertebrate gut microbiota. Nature 6:776–788Google Scholar
- Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. Nature 444:1022–1023PubMedGoogle Scholar
- Louis P, Scott KP, Duncan P, Flint HJ (2007) Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 102:1197–1208PubMedGoogle Scholar
- Mackie RI (2002) Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr Comp Biol 42:319–326PubMedGoogle Scholar
- Mackie RI, Gilchrist FMC, Robberts AM, Hannah PE, Schwartz HM (1978) Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. J Agric Sci 90:241–254Google Scholar
- Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69:1035S–1045SPubMedGoogle Scholar
- Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P (2008) The immune geography of IgA induction and function. Nat Rev 1:11–22Google Scholar
- Marques S, Ramos JL (1993) Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Mol Microbiol 9:923–929PubMedGoogle Scholar
- Marshall AJ, Boyko CM, Feilen KL, Boyko RH, Leighton M (2009) Defining fallback foods and assessing their importance in primate ecology and evolution. Am J Phys Anthropol 140:603–614PubMedGoogle Scholar
- Martinez-Mota R, Valdespino C, Sanchez-Ramos MA, Serio-Silva JC (2007) Effects of forest fragmention on the physiological stress of black howler monkeys. Anim Cons 10:374–379Google Scholar
- McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Cornell University, IthacaGoogle Scholar
- McCord AI, Chapman CA, Weny G, Tumukunde A, Hyeroba D, Klotz K, Koblings AS, Mbora DNM, Cregger M, White BA, Leigh SR, Goldberg TL (2013) Fecal microbiomes of non-human primates in western Uganda reveal species-specific communities largely resistant to habitat perturbation. Am J Primatol Google Scholar
- Medani M, Collins D, Docherty NG, Baird AW, O’Connell PR, Winter DC (2011) Emerging role of hydrogen sulfide in colonic physiology and pathophysiology. Inflamm Bowel Dis 17:1620–1625PubMedGoogle Scholar
- Mellado M, Rodriguez A, Villareal JA, Olvera A (2005) The effect of pregnancy and lactation on diet composition and dietary preference of goats in a desert rangeland. Small Ruminant Res 58:79–85Google Scholar
- Meserve PL et al (2003) Thirteen years of shifting top-down and bottom-up control. Bioscience 53:633–646Google Scholar
- Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson JF, Tougeot C, Pichelin M, Cazaubiel M, Cazaubiel JM (2010) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105:755–764PubMedGoogle Scholar
- Milton K (1980) The foraging strategy of howler monkeys. Columbia University, New YorkGoogle Scholar
- Milton K (1984) The role of food-processing factors in primate food choice. In: Rodman PS, Cant JGH (eds) Adaptations for foraging in nonhuman primates: Contribution to an organismal biology of prosimians, monkeys, and apes. Columbia University, New YorkGoogle Scholar
- Milton K, McBee RH (1983) Rates of fermentative digestion in the howler monkey, Alouatta Palliata (Primates: Ceboidea). Comp Biochem Physiol 74A:29–31Google Scholar
- Milton K, Van Soest P, Robertson J (1980) Digestive efficiencies of wild howler monkeys. Physiol Zool 53:402–409Google Scholar
- Moeller AH, Peeters M, Ndjango JB, Li Y, Hahn BH, Ochman H (2013) Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res 23: 1715–1720PubMedCentralPubMedGoogle Scholar
- Moreau MC, Ducluzeau R, Guy-Grand D, Muller MC (1978) Increase in the population of duodenal immunoglobulin a plasmocytes in axenic mice associated with different living or dead bacterial strain of intestinal origin. Infect Immun 21:532–539PubMedCentralPubMedGoogle Scholar
- Nagy KA, Milton K (1979) Energy metabolism and food consumption by wild howler monkeys (Alouatta palliata). Ecology 60:475–480Google Scholar
- Nakamura N, Amato KR, Garber PA, Estrada AE, Mackie RI, Gaskins HR (2011) Analysis of the hydrogenotrophic microbiota of wild and captive black howler monkeys (Alouatta pigra) in Palenque National Park, Mexico. Am J Primatol 73:909–919PubMedGoogle Scholar
- Nakamura N, Leigh SR, Mackie RI, Gaskins HR (2009) Microbial community analysis of rectal methanogens and sulfate reducing bacteria in two non-human primate species. J Med Primatol 38:360–370PubMedGoogle Scholar
- Nakata PA, McConn MM (2007) Calcium oxalate content affects the nutritional availability of calcium from Medicago truncatula. Plant Sci 172:958–961Google Scholar
- Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136:65–80PubMedCentralPubMedGoogle Scholar
- Norconk MA, Wright BW, Conklin-Brittain NL, Vinyard CJ (2009) Mechanical and nutritional properties of food as factors in platyrrhine dietary adaptations. In: Garber PA, Bicca-Marques JC, Estrada AE, Heymann EW, Strier KB (eds) South American Primates, Developments in Primatology: Progress and Prospects. Springer, New YorkGoogle Scholar
- O’Brien TG, Kinnaird M, Dierenfeld ES, Conklin-Brittain NL, Wrangham RW, Silver SC (1998) What’s so special about figs? Nature 392:668Google Scholar
- Ochman H, Worobey M, Kuo CH, Ndjango JBN, Peeters M, Hahn BH, Hugenholtz P (2010) Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol 8:e1000546PubMedCentralPubMedGoogle Scholar
- Oftedal OT, Whiten A, Southgate DAT, Van Soest P (1991) The nutritional consequences of foraging in primates: the relationship of nutrient intakes to nutrient requirements. Philos Trans R Soc Lond B Biol Sci 334:161–170PubMedGoogle Scholar
- Ohara H, Karita S, Kimura T, Sakka K, Ohmiya K (2000) Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci Biotechnol Biochem 64:254–260PubMedGoogle Scholar
- Osborn AM, Morre RB, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50PubMedGoogle Scholar
- Ostfeld RS, Keesing F (2000) Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol Evol 15:232–237PubMedGoogle Scholar
- Overdorff DJ, Strait SG, Telo A (1997) Seasonal variation in activity and diet in a small-bodied folivorous primate, Hapalemur griseus, in southeastern Madagascar. Am J Primatol 43:211–223PubMedGoogle Scholar
- Pavelka MSM, Knopff KH (2004) Diet and activity in black howler monkeys (Alouatta pigra) in southern Belize: does degree of frugivory influence activity level? Primates 45:105–111PubMedGoogle Scholar
- Park AJ, Collins J, Blennerhassett P, Ghia JE, Verdu EF, Bercik P, Collins SM (2013) Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterology and Motility 25: 733–e575PubMedCentralPubMedGoogle Scholar
- Peles JD, Barrett GW (2008) The golden mouse: a model of energetic efficiency. In: Barrett GW, Feldhamer GA (eds) The Golden Mouse: Ecology and Conservation. Springer, New YorkGoogle Scholar
- Phillips KA, Abercrombie CL (2003) Distribution and conservation status of the primates of Trinidad. Primate Conserv 19:19–22Google Scholar
- Pozo-Montuy G, Serio-Silva JC, Bonilla-Sanchez YM (2011) Influence of the landscape matrix on the abundance of arboreal primates in fragmented landscapes. Primates 52:139–147PubMedGoogle Scholar
- Raguet-Schofield ML (2009) The ontogeny of feeding behavior of Nicaraguan mantled howler monkeys (Alouatta palliata). Ph.D. dissertation, Department of Anthropology University of Illinois, UrbanaGoogle Scholar
- Redford KH, Segre JA, Salafsky N, Martinez del Rio C, McAloose D (2012) Conservation and the microbiome. Conserv Biol 26:195–197PubMedCentralPubMedGoogle Scholar
- Righini N (2014) Primate nutritional ecology: the role of food selection, energy intake, and nutrient balancing in Mexican black howler monkey (Alouatta pigra) foraging strategies. Ph.D. dissertation, Department of Anthropology, University of Illinois at Urbana-Champaign, UrbanaGoogle Scholar
- Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363PubMedGoogle Scholar
- Rothman JM, Dierenfeld ES, Molina DO, Shaw AV, Hintz HF, Pell AN (2006) Nutritional chemistry of foods eaten by gorillas in Bwindi Impenetrable National Park, Uganda. Am J Primatol 68:675–691PubMedGoogle Scholar
- Rothman JM, Plumptre AJ, Dierenfeld ES, Pell AN (2007) Nutritional composition of the diet of the gorilla (Gorilla beringei): a comparison between two montane habitats. J Trop Ecol 23:673–682Google Scholar
- Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T, Marti-Romero M, Lopez RM, Florido J, Campoy C, Sanz Y (2010) Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 104:83–92PubMedGoogle Scholar
- Schoeninger MJ, Iwaniec UT, Glander K (1997) Stable isotope ratios indicate diet and habitat use in New World monkeys. Am J Phys Anthropol 103:69–83PubMedGoogle Scholar
- Sekirov I, Russel SI, Antunes CM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904PubMedGoogle Scholar
- Serio-Silva JC, Hernandez-Salazar LT, Rico-Gray V (1999) Nutritional composition of the diet of Alouatta palliata mexicana females in different reproductive states. Zoo Biol 18:507–513Google Scholar
- Servin AL (2004) Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28:405–440PubMedGoogle Scholar
- Sherry DS, Ellison PT (2007) Potential applications of urinary c-peptide of insulin for comparative energetics research. Am J Phys Anthropol 133:771–778PubMedGoogle Scholar
- Spor A, Koren O, Ley RE (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev 9:279–290Google Scholar
- Stevens CE, Hume ID (1995) Comparative physiology of the vertebrate digestive system. Cambridge University, New YorkGoogle Scholar
- Stoner KE, Gonzalez Di Pierro A (2006) Intestinal parasitic infections in Alouatta pigra in tropical rainforest in Lacandona, Chiapas, Mexico: implications for behavioral ecology and conservation. In: Estrada AE, Garber PA, Pavelka MS, Luecke L (eds) New perspectives in the study of Mesoamerican primates. Springer, New YorkGoogle Scholar
- Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299:1259–1260PubMedCentralPubMedGoogle Scholar
- Strier KB (1992) Atelinae adaptations: behavioral strategies and ecological constraints. Am J Phys Anthropol 88:515–524PubMedGoogle Scholar
- Stuart CS, Duncan SH, Cave DR (2004) Oxalobacter formigenes and its role in oxalate metabolism in the human gut. FEMS Microbiol Lett 230:1–7Google Scholar
- Sudo N (2006) Stress and gut microbiota: does postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response? Int Cong Ser 1287:350–354Google Scholar
- Suzuki K, Harasawa R, Yoshitake Y, Mitsuoka T (1983) Effect of crowding and heat stress on intestinal flora, body weight gain, and feed efficiency of growing rats and chicks. Nippon Juigaku Zasshi 45:331–338PubMedGoogle Scholar
- Szekely BA, Singh J, Marsh TL, Hagedorn C, Werre SR, Kaur T (2010) Fecal bacterial diversity of human-habituated wild chimpanzees (Pan troglodytes schweinfurthii) at Mahale Mountains National Park, western Tanzania. Am J Primatol 72:566–574PubMedGoogle Scholar
- Talham GL, Jiang HQ, Bos NA, Cebra JJ (1999) Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 67:1992–2000PubMedCentralPubMedGoogle Scholar
- Thompson ME, Knott CD (2008) Urinary c-peptide of insulin as a non-invasive marker of energy balance in wild orangutans. Horm Behav 53:526–535Google Scholar
- Thompson ME, Muller MN, Wrangham RW, Lwanga JS, Potts KB (2008) Urinary c-peptide tracks seasonal and individual variation in energy balance in wild chimpanzees. Horm Behav 55:299–305Google Scholar
- Trejo-Macias G, Estrada AE, Mosqueda Cabrera MA (2007) Survey of helminth parasites in populations of Alouatta palliata mexicana and A. pigra in continuous and in fragmented habitat in Southern Mexico. Int J Primatol 28:931–945Google Scholar
- Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031PubMedGoogle Scholar
- Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon HA (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14. doi: 10.1126/scitranslmed.3000322.
- Uenishi G, Fujita S, Ohashi G, Kato A, Yamauchi S, Matsuzawa T, Ushida K (2007) Molecular analyses of the intestinal microbiota of chimpanzees in the wild and in captivity. Am J Primatol 69:367–376PubMedGoogle Scholar
- Vitazkova SK, Wade SE (2007) Effects of ecology on the gastrointestinal parasites of Alouatta pigra. Int J Primatol 28:1327–1343Google Scholar
- Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108PubMedCentralPubMedGoogle Scholar
- Xu B, Xu W, Yang F, Li J, Yang Y, Tang X, Mu Y, Zhou J, Huang Z (2013) Metagenomic analysis of the pygmy loris fecal microbiome reveals unique functional capacity related to metabolism of aromatic compounds. PLoS One 8:e56565PubMedCentralPubMedGoogle Scholar
- Yannarell AC, Triplett EW (2005) Geographic and environmental sources of variation in lake bacterial community composition. Appl Environ Microbiol 71:227–239Google Scholar
- Yeoman CJ, Chia N, Yildirim S, Berg Miller ME, Kent A, Stumpf RM, Leigh SR, Nelson KE, White BA, Wilson BA (2011) Towards an evolutionary model of animal-associated microbiomes. Entropy 13:570–594Google Scholar
- Yildirim S, Yeoman CJ, Sipos M, Torralba M, Wilson BA, Goldberg TL, Stumpf RM, Leigh SR, White BA, Nelson KE (2010) Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLoS One 5:e13963PubMedCentralPubMedGoogle Scholar
- Zoetendal EG, Akkermans ADL, Akkermans-va Vliet WM, de Visser JAGM, De Vos WM (2001) The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis 13:129–134Google Scholar
- Zunino GE, Kowalewski MM, Oklander LI, Gonzalez V (2007) Habitat fragmentation and population size of the black and gold howler monkey (Alouatta caraya) in a semideciduous forest in Northern Argentina. Am J Primatol 69:966–975PubMedGoogle Scholar