Skip to main content

Basic Review of the Oxidative Stress Role in Age-Related Cataractogenesis

  • Chapter
  • First Online:
Studies on the Cornea and Lens

Abstract

Age-related cataract not only diminishes human life quality but, as the population ages globally, it also represents a big impact on healthcare budget of almost every country. Hence, cataract prevention is a big and true challenge, but a very difficult task to be accomplished. Nowadays cataract is more than a routinely recognized and almost always successfully operated ophthalmologic disease. The diagnosis of age-related cataract diagnosis might alert doctors to some systemic disorders on the whole body level. Increasing age is certainly the most essential age-related cataract risk factor. However, it seems that cataract could be a multifactor disease because of its individual, familial, racial, and gender expression differences.

Oxidation stress and its form caused by ultraviolet light, photooxidative stress, is considered to be crucial in the etiopathogenesis of cataract. All biomolecules suffer damages during cataract formation. On the other side, the lens possesses a range of antioxidant elements and mechanisms of their action, which enable long lasting maintenance of lens transparency and functioning. Although they are primary characteristics of the lens, these antioxidant elements also depend on their systemic availability and consumption. This chapter is a short literature review of the relation between oxidation stress and age-related cataract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babizhayev MA, Deyev AI, Yermakova VN, Brikman IV, Bours J. Lipid peroxidation and cataracts: N-acetylcarnosine as a therapeutic toll to manage age-related cataracts in human and canine eyes. Drugs RD. 2004;5(3):125–39.

    Article  CAS  Google Scholar 

  2. Latinović S, Čanadanović V, Babić N, Lješević LJ, Grković D, Žikić Z, Babović S, et al. Istraživanje kvaliteta života uslovljenog funkcijom vida: studija katarakte. Med Pregl. 2007;60(11–12):653–6.

    Article  PubMed  Google Scholar 

  3. Bernardino CR. AMD, cataracts and mortality. Arch Ophthalmol. 2007;125:917–24.

    Article  Google Scholar 

  4. Spector A. Oxidative stress-induced cataract: mechanism of action. FASEB J. 1995;9(12):1173–82.

    CAS  PubMed  Google Scholar 

  5. Žorić L, Jovanović P. Oxidation stress in eye diseases pathogenesis (In Serbian). Niš: SVEN; 2006.

    Google Scholar 

  6. Čolak E. New markers of oxidative damage to macromolecules. J Med Biochem. 2008;27:1–16.

    Article  Google Scholar 

  7. Mayne ST. Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative stress status in epidemiological research. J Nutr. 2003;133:933s–40.

    CAS  PubMed  Google Scholar 

  8. Žorić L, Stojčić M. The influence of ultraviolet radiation on eye. Primary health care: open access. http://www.omicsgroup.org/journals/the-influence-of-ultraviolet-radiation-on-eye-2167-1079.1000133.pdf

  9. Delcourt C, Carriere I, Ponton-Sanchez A, Lacroux A, Covacho MJ, Papoz L. Light exposure and the risk of cortical, nuclear, and posterior subcapsular cataracts: the Pathologies Oculaires Liees a l’Age (POLA) study. Arch Ophthalmol. 2000;118(3):385–92.

    Article  CAS  PubMed  Google Scholar 

  10. Zoric L, Miric D, Novakovic T, Pavlovic A, Videnovic G, Trajkovic G. Age-related cataract and serum albumin concentration. Curr Eye Res. 2008;33(7):587–90.

    Article  CAS  PubMed  Google Scholar 

  11. Costagliola C, Balestrieri P, Fioretti F, Fumizio C, Rinaldi M. ArF193nm excimer laser corneal surgery as a possible risk factor in cataractogenesis. Exp Eye Res. 1994;58(4):453–73.

    Article  CAS  PubMed  Google Scholar 

  12. Spector A, Kliman N, Wang RR. Ultraviolet light induced DNA damage and repair in bovine lens epithelial cells. Invest Ophthalmol Vis Sci (Suppl). 1990;31:430–6.

    Google Scholar 

  13. Taylor HR. The biological effects of UV-B on the eye. Photochem Photobiol. 1989;50:489–95.

    Article  CAS  PubMed  Google Scholar 

  14. Boscia F, Grattagliano I, Vendemiale G, Micelli-Ferrari T, Altomare E. Protein oxidation and lens opacity in humans. Invest Ophthalmol Vis Sci. 2000;41(9):2461–5.

    CAS  PubMed  Google Scholar 

  15. Zigler JS, Huang QL, Du XY. Oxidative modification of lens crystallyns by H2O2 and chelated iron. Free Rad Biol Med. 1989;7:499–505.

    Article  CAS  PubMed  Google Scholar 

  16. Žorić L. Some oxidation stress parameters in lens, aqueous humor and serum of patients with diabetes and age-related cataract. (In Serbian). Srp Arh Celok Lek. 2003;131(3–4):137–42.

    PubMed  Google Scholar 

  17. Zoric L, Miric D, Milenkovic S, Jovanovic P, Trajkovic G. Pseudo exfoliation syndrome and its antioxidative protection deficiency as risk factors for age-related cataract. Eur J Ophthalmol. 2006;16(2):268–73.

    CAS  PubMed  Google Scholar 

  18. Grosswiner LJ. Photochemistry of proteins: a review. Curr Eye Res. 1984;3:137–42.

    Article  Google Scholar 

  19. Pau H, Graf P, Sies H. Glutathione levels in human lens: regional distribution in different forms of cataract. Exp Eye Res. 1990;50(1):17–20.

    Article  CAS  PubMed  Google Scholar 

  20. Roberts JE, Finley EL, Patat SA, Schey KL. Photooxidation of lens proteins with xanthurenic acid: a putative chromophore for cataractogenesis. Photochem Photobiol. 2001;74(5):740–4.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng R, Lin B, Ortwerth BJ. Separation of the yellow chromophores in individual brunescent cataracts. Exp Eye Res. 2003;77(3):313–25.

    Article  CAS  PubMed  Google Scholar 

  22. Korlimbinis A, Hains PG, Truscott RJ, Aquilina JA. 3-Hydroxykynurenine oxidizes alpha-crystallyns: potential role in cataractogenesis. Biochemistry. 2006;45(6):1852–60.

    Article  CAS  PubMed  Google Scholar 

  23. Žorić L, Aleksić P, Koraćević D, Trajković G. Antioksidacioni kapacitet očne vodice kod različitih vrsta i pigmentacije senilne katarakte. Vojnosanit Pregl. 2005;62(12):909–15.

    Article  PubMed  Google Scholar 

  24. Mibu H, Nagata M, Hikida M. A study on lipid peroxide-induced lens damage in vitro. Exp Eye Res. 1994;58:85–90.

    Article  CAS  PubMed  Google Scholar 

  25. Transcott RJ. Age-related nuclear cataract-oxidation is the key. Exp Eye Res. 2005;80(5):709–25.

    Article  Google Scholar 

  26. Lou MF. Thiol regulation in the lens. J Ocul Pharmacol Ther. 2000;16(2):137–48.

    Article  CAS  PubMed  Google Scholar 

  27. Bonnefoy M, Drai J, Kostka T. Antioxidants to slow aging, facts, and perspectives. Presse Med. 2002;32(25):1174–84.

    Google Scholar 

  28. Cronstein BN. Oxidative insults: sublethal injury to the endothelium by H2O2. J Lab Clin Med. 1991;117(1):6–7.

    CAS  PubMed  Google Scholar 

  29. Chen SJ, Sun TX, Akhtar NJ, Liang JJ. Oxidation of human lens recombinant alpha A-crystallin and cysteine-deficient mutants. J Mol Biol. 2001;305(4):969–76.

    Article  CAS  PubMed  Google Scholar 

  30. John M, Jaworski C, Chen Z, Subramanian S, Ma W, Sun F, et al. Matrix metalloproteinases are down-regulated in rat lenses exposed to oxidative stress. Exp Eye Res. 2004;79(6):839–46.

    Article  CAS  PubMed  Google Scholar 

  31. Fecondo JV, Augusteyn RC. Superoxide dismutase, catalase and glutathione peroxidase in the human cataractous lens. Exp Eye Res. 1983;36:15–8.

    Article  CAS  PubMed  Google Scholar 

  32. Cendella RJ, Neely AR, Sexton P. Concentration and distribution of ubiquinone (conezime Q), the endogenous lipid antioxidant, in the rat lens: effect of treatment with simvastatin. Mol Vis. 2005;11:594–602.

    Google Scholar 

  33. Goosey JD, Tuan WM, Garcia CA. A lipid peroxidative mechanism for posterior subcapsular cataract formation in rabbit: a possible model for cataract formation in tapetoretinal diseases. Invest Ophthalmol Vis Sci. 1984;25(2):608–12.

    CAS  PubMed  Google Scholar 

  34. Shui YB, Fu JJ, Garcia C, Dattilo LK, Rajagopal R, McMillan S, et al. Oxygen distribution in the rabbit eye and oxygen consumption by the lens. Invest Ophthalmol Vis Sci. 2006;47(4):1571–80.

    Article  PubMed  Google Scholar 

  35. Palmquist D. Nuclear cataract and myopia during hyperbaric oxygen therapy. Br J Ophthalmol. 1984;68:113–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Borchman D, Giblin FJ, Leverenz VR, et al. Impact of aging and hyperbaric oxygen in vivo on guinea pig lens lipids and nuclear light scatter. Invest Ophthalmol Vis Sci. 2000;41(10):3061–73.

    CAS  PubMed  Google Scholar 

  37. Reiss GR, Werness PG, Zollman PE, Brubaker RF. Ascorbic acid levels in the aqueous humour of nocturnal and diurnal mammals. Arch Ophthalmol. 1986;104:753–5.

    Article  CAS  PubMed  Google Scholar 

  38. Ayala MN, Soderberg PG. Vitamin E can protect against ultraviolet radiation-induced cataract in albino rats. Ophthalmic Res. 2004;36(5):264–9.

    Article  CAS  PubMed  Google Scholar 

  39. Borchman D, Yappert MC, Afzal M. Lens lipids and maximum lifespan. Exp Eye Res. 2004;79(6):761–8.

    Article  CAS  PubMed  Google Scholar 

  40. Yagci R, Aydin B, Erdurmus M, Karadag R, Gurel A, Durmus M, et al. Use of melatonin to prevent selenite-induced cataract formation in rat eyes. Curr Eye Res. 2006;31(10):845–50.

    Article  CAS  PubMed  Google Scholar 

  41. Karslioglu I, Ertekin MV, Taysi S, Kocer I, Sezen O, Gepdiremen A, et al. Radioprotective effect of melatonin on radiation-induced cataract. J Radiat Res. 2005;46(2):277–82.

    Article  CAS  PubMed  Google Scholar 

  42. Age-Related Eye Disease Study Group. A randomized, placebo-controlled clinical trial of high-dose supplementation with vitamins C, and E, and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Arch Ophthalmol. 2001;119(10):1439–52.

    Article  Google Scholar 

  43. Schalch W, Chylack LT. Antioxidant micronutrients and cataract: review and comparison of the AREDS and REACT cataract studies. Ophthalmologe. 2003;100(3):181–9.

    Article  CAS  PubMed  Google Scholar 

  44. Barcley L, Nghiem HT. Vitamin E may not reduce risk for age-related cataracts. http://www.medscape.com, May 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lepša Žorić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Žorić, L., Miric, D., Kisic, B. (2015). Basic Review of the Oxidative Stress Role in Age-Related Cataractogenesis. In: Babizhayev, M., Li, DC., Kasus-Jacobi, A., Žorić, L., Alió, J. (eds) Studies on the Cornea and Lens. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1935-2_9

Download citation

Publish with us

Policies and ethics