Skip to main content

Photosensitized Oxidation of Lens Proteins Exposed to UVA-Visible Light at Low Oxygen Concentration: Its Effect on the Proteasome System

  • Chapter
  • First Online:
Studies on the Cornea and Lens

Abstract

This chapter describes the photosensitizing properties of the colored compounds generated in the human lens during aging and their effect on the proteasomal system. All the experiments were performed using UVA-visible light and a low oxygen concentration, which corresponds to the actual condition in this tissue. The colored and cross-linked lens proteins, which are increasingly generated as a function of aging, do not undergo additional cross-linking when exposed to UVA-visible light under a low oxygen pressure. The photosensitized damage observed in these conditions is restricted to oxidation processes located near the chromophore. Interestingly, a glucose-derived chromophore with identical spectral and chromatographic properties as those found in one of the components of the water-soluble fractions of cataractous human eye lenses produces increased protein oxidation and protein cross-linking when lens proteins were exposed to UVA-visible light under a 5 % oxygen atmosphere. In addition, increased proteasome peptidase activity was observed. The behavior of this protective system in human lenses corresponding to various age groups is also described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AGEs:

Advanced glycation end products

ASC:

Ascorbate

BLPs:

Bovine lens proteins

CML:

Carboxymethyllysine

GDC:

Glucose decomposition chromophore

Glc:

Glucose

LP:

Lens protein

RH:

Reduced substrate

RH•+ :

R and ROxid represent the intermediate radical cation, the neutral radical and the oxidized form of the substrate, respectively

ROS:

Reactive oxygen species

S:

Sensitizer

Threo:

Threose

References

  1. Turner PL, Mainster MA. Circadian photoreception: ageing and the eye’s important role in systemic health. Br J Ophthalmol. 2008;92:1439–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Turner PL, Van Someren EJW, Mainster MA. The role of environmental light in sleep and health: effects of ocular aging and cataract surgery. Sleep Med Rev. 2010;14:269–80.

    PubMed  Google Scholar 

  3. Ortwerth BJ, Bhattacharyya J, Shipova E. Tryptophan metabolites from human lenses and the photooxidation of ascorbic acid by UVA light. Invest Ophthalmol Vis Sci. 2009;50:3311–9.

    PubMed  Google Scholar 

  4. Kessel L, Eskildsen L, Lundeman JH, Jensen OB, Larsen M. Optical effects of exposing intact human lenses to ultraviolet radiation and visible light. BMC Ophthalmol. 2011;11:41–7.

    PubMed Central  PubMed  Google Scholar 

  5. Jose JG, Pitts DG. Wavelength dependence of cataracts in albino mice following chronic exposure. Exp Eye Res. 1985;41:545–63.

    CAS  PubMed  Google Scholar 

  6. Andley UP, Malone JP, Townsend RR. Inhibition of lens photodamage by UV-absorbing contact lenses. Invest Ophthalmol Vis Sci. 2011;52:8330–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Giblin FJ, Lin LR, Leverenz VR, Dang L. A class I (Senofilcon A) soft contact lens prevents UVB-induced ocular effects, including cataract, in the rabbit in vivo. Invest Ophthalmol Vis Sci. 2011;52:3667–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Gao N, Hu L-W, Gao Q, Ge T-T, Wang F, Chu C, Yang H, Liu Y. Diurnal variation of ocular exposure to solar ultraviolet radiation based on data from a manikin head. Photochem Photobiol. 2012;88:736–43.

    CAS  PubMed  Google Scholar 

  9. McCarty CA, Taylor HR. Recent developments in vision research: light damage in cataract. Invest Ophthalmol Vis Sci. 1996;37:1720–3.

    CAS  PubMed  Google Scholar 

  10. Boettner EA, Wolter JR. Transmission of the ocular media. Invest Ophthalmol Vis Sci. 1962;1:776–83.

    Google Scholar 

  11. Sliney DH. Physical factors in cataractogenesis: ambient ultraviolet radiation and temperature. Invest Ophthalmol Vis Sci. 1986;27:781–90.

    CAS  PubMed  Google Scholar 

  12. Tsentalovich YP, Sherin PS, Kopylova LV, Cherepanov IV, Grilj J, Vauthey E. Photochemical properties of UV filter molecules of the human eye. Invest Ophthalmol Vis Sci. 2011;52:7687–96.

    CAS  PubMed  Google Scholar 

  13. Giblin FJ, Lin LR, Simpanya MF, Leverenz VR, Fick CE. A class I UV-blocking (senofilcon A) soft contact lenses prevents UVA-induced yellow fluorescence and NADH loss in the rabbit lens nucleus in vivo. Exp Eye Res. 2012;102:17–27.

    CAS  PubMed  Google Scholar 

  14. Hiramoto K, Yamate Y, Kobayashi H, Ishii M. Long-term ultraviolet A irradiation of the eye induces photoaging of the skin in mice. Arch Dermatol Res. 2012;304:39–45.

    CAS  PubMed  Google Scholar 

  15. Borkman RF, Tassin JD, Lerman S. Fluorescence lifetimes of chromophores in intact human lenses and lens proteins. Exp Eye Res. 1981;32:313–22.

    CAS  PubMed  Google Scholar 

  16. Cheng R, Lin B, Lee KW, Ortwerth BJ. Similarity of the yellow chromophores isolated from human cataracts with those from ascorbic acid-modified calf lens proteins: evidence for ascorbic acid glycation during cataract formation. Biochim Biophys Acta. 2001;1537:14–26.

    CAS  PubMed  Google Scholar 

  17. Thiagarajan G, Shirao E, Ando K, Inoue A, Balasubramanian D. Role of xanthurenic acid 8-O-beta-glucoside, a novel fluorophore that accumulates in the brunescent human eye lens. Photochem Photobiol. 2002;76:368–72.

    CAS  PubMed  Google Scholar 

  18. Cheng RZ, Lin B, Ortwerth BJ. Separation of the yellow chromophores in individual brunescent cataracts. Exp Eye Res. 2003;77:313–25.

    CAS  PubMed  Google Scholar 

  19. Cheng R, Feng Q, Argirov OK, Ortwerth BJ. Structure elucidation of a novel yellow chromophore from human lens protein. J Biol Chem. 2004;279:45441–9.

    CAS  PubMed  Google Scholar 

  20. Argirov OK, Lin B, Ortwerth BJ. 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate (OP-lysine) is a newly identified advanced glycation end product in cataractous and aged human lenses. J Biol Chem. 2004;279:6487–95.

    CAS  PubMed  Google Scholar 

  21. Dillon J. New trends in photobiology: the photophysics and photobiology of the eye. J Photochem Photobiol B. 1991;10:23–40.

    CAS  PubMed  Google Scholar 

  22. Krishna CM, Uppuluri S, Riesz P, Zigler Jr JS, Balasubramanian D. A study of the photodynamic efficiencies of some eye lens constituents. Photochem Photobiol. 1991;54:51–8.

    CAS  PubMed  Google Scholar 

  23. Ortwerth BJ, Prabhakaram M, Nagaraj RH, Linetsky M. The relative UV sensitizer activity of purified advanced glycation end products. Photochem Photobiol. 1997;65:666–72.

    CAS  PubMed  Google Scholar 

  24. Argirova MD, Breipohl W. Glycated proteins can enhance photooxidative stress in aged and diabetic lenses. Free Radic Med. 2000;36:1251–9.

    Google Scholar 

  25. Zigman S. Lens UVA photobiology. J Ocul Pharmacol Ther. 2000;16:161–5.

    CAS  PubMed  Google Scholar 

  26. Balasubramanian D. Photodynamics of cataract: an update on endogenous chromophores and antioxidants. Photochem Photobiol. 2005;81:498–501.

    CAS  PubMed  Google Scholar 

  27. Yoshimura A, Ohno T. Lumiflavin-sensitized photooxygenation of indole. Photochem Photobiol. 1988;48:561–5.

    CAS  PubMed  Google Scholar 

  28. Silva E, Ugarte R, Andrade A, Edwards AM. Riboflavin-sensitized photoprocesses of tryptophan. J Photochem Photobiol B. 1994;23:43–8.

    CAS  PubMed  Google Scholar 

  29. De la Rochette A, Birlouez-Aragon I, Silva E, Morliere P. Advanced glycation endproducts as UVA photosensitizers of tryptophan and ascorbic acid: consequence for the lens. Biochim Biophys Acta. 2003;1621:235–41.

    Google Scholar 

  30. Silva E, Quina FH. Photoinduced processes in the eye lens: do flavins really play a role? In: Silva E, Edwards AM, editors. Flavins. Photochemistry and photobiology. Cambridge: RSC Publishing; 2006.

    Google Scholar 

  31. Shui YB, Fu JJ, García C, Dattilo LK, Rsjagopal R, Mc Millan S, Mak G, Holekamp NM, Lewis A, Beebe DC. Oxygen distribution in the rabbit eye and oxygen consumption by the lens. Invest Ophthalmol Vis Sci. 2006;47:1571–80.

    PubMed  Google Scholar 

  32. McNulty R, Wang H, Mathias RT, Ortwerth BJ, Truscott RJW, Bassnett S. Regulation of tissue oxygen levels in the mammalian lens. J Physiol. 2004;559:883–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Giblin FJ, Leverenz VR, Padgaonkar VA, Unakar NJ, Dang L, Lin LR, Lou MF, Reddy VN, Borchman D, Dillon JP. UVA light in vivo reaches the nucleus of the guinea pig lens and produces deleterious, oxidative effects. Exp Eye Res. 2002;75:445–58.

    CAS  PubMed  Google Scholar 

  34. Bassnett S, McNulty R. The effect of elevated intraocular oxygen on organelle degradation in the embryonic Chicken lens. J Exp Biol. 2003;206:4353–61.

    PubMed  Google Scholar 

  35. Haracopos GP, Shui YB, McKinnon M, Holekamp NM, Gordon MO, Beebe DC. Importance of vitreous liquefaction in age-related cataract. Invest Ophthalmol Vis Sci. 2004;45:77–85.

    Google Scholar 

  36. Sweeney M, Truscott RJW. An impediment to glutathione diffusion in older human lenses: a possible precondition for nuclear cataract. Exp Eye Res. 1998;67:587–95.

    CAS  PubMed  Google Scholar 

  37. Roberts JE, Finley EL, Patat SA, Schey KL. Photooxidation of lens proteins with xanthurenic acid: a putative chromophore for cataractogenesis. Photochem Photobiol. 2001;74:740–4.

    CAS  PubMed  Google Scholar 

  38. Davies MJ, Truscott RJW. Photo-oxidation of proteins and its role in cataractogenesis. J Photochem Photobiol B. 2002;63:114–25.

    Google Scholar 

  39. Zigman S. Environmental near-UV radiation and cataracts. Optom Vis Sci. 1995;72:899–907.

    CAS  PubMed  Google Scholar 

  40. Shirao Y, Shirao E, Iwase T, Inoue A, Matsukawa S. Comparison of non-tryptophan fluorophores in protein-free extract brunescent and non-brunescent human cataract. Jpn J Ophthalmol. 2000;44:198–204.

    CAS  PubMed  Google Scholar 

  41. Dillon J, Atherton SJ. Time resolved spectroscopic studies on the intact human lens. Photochem Photobiol. 1990;51:465–8.

    CAS  PubMed  Google Scholar 

  42. Sell DR, Monnier VM. Conversion of arginine into ornithine by advanced glycation in senescent human collagen and lens crystallins. J Biol Chem. 2004;279:54173–84.

    CAS  PubMed  Google Scholar 

  43. Nagaraj RH, Oya-Ito T, Padayatti PS, Kumar R, Mehta S, West K, Levison B, Sun J, Crabb JW, Padival AK. Enhancement of chaperone function of alpha-crystallin by methyl-glyoxal modification. Biochemistry. 2003;42:10746–55.

    CAS  PubMed  Google Scholar 

  44. Cheng R, Lin B, Ortwerth BJ. Rate of formation of AGEs during ascorbate glycation and during aging in human lens tissue. Biochim Biophys Acta. 2002;1587:65–74.

    CAS  PubMed  Google Scholar 

  45. Stevens VJ, Rouzer CA, Monnier VM, Cerami A. Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc Natl Acad Sci U S A. 1978;75:2918–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Oimomi M, Maeda Y, Hata F, Kitamura Y, Matsumoto S, Baba S, Iga T, Yamamoto M. Glycation of cataractous lens in non-diabetic senile subjects and in diabetic patients. Exp Eye Res. 1988;46:415–20.

    CAS  PubMed  Google Scholar 

  47. Ortwerth BJ, Olesen PR. Ascorbic acid-induced crosslinking of lens proteins: evidence supporting a Maillard reaction. Biochim Biophys Acta. 1988;956:10–22.

    CAS  PubMed  Google Scholar 

  48. Ortwerth BJ, Linetzky M, Olesen P. Ascorbic acid glycation of lens proteins produces UVA sensitizers similar to those in human lens. Photochem Photobiol. 1995;62:454–62.

    CAS  PubMed  Google Scholar 

  49. Simpson G, Ortwerth BJ. The non-oxidative degradation of ascorbic acid at physiological conditions. Biochim Biophys Acta. 2000;1501:12–24.

    CAS  PubMed  Google Scholar 

  50. Gobert J, Glomb MA. Degradation of glucose: reinvestigation of reactive α-dicarbonyl compounds. J Agric Food Chem. 2009;57:8591–7.

    CAS  PubMed  Google Scholar 

  51. Harding JJ, Chasset P, Rixon KC, Bron AJ, Harvey DJ. Sugars including erythronic and threonic acids in human aqueous humor. Curr Eye Res. 1999;19:131–6.

    CAS  PubMed  Google Scholar 

  52. Nemet I, Monnier VM. Vitamin C degradation products and pathways in the human lens. J Biol Chem. 2011;286:37128–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Lederer MO, Klaiber RG. Cross-linking of proteins by Maillard processes: characterization and detection of lysine-arginine cross-links derived from glyoxal and methylglyoxal. Bioorg Med Chem. 1999;7:2499–507.

    CAS  PubMed  Google Scholar 

  54. Nakamura K, Nakazawa Y, Ienaga K. Acid-stable fluorescent advanced glycation end products: vesperlysines A, B, and C are formed as crosslinked products in the Maillard reaction between lysine or proteins with glucose. Biochem Biophys Res Commun. 1997;232:227–30.

    CAS  PubMed  Google Scholar 

  55. Padayatti PS, Ng AS, Uchida K, Glomb MA, Nagaraj RH. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Invest Ophthalmol Vis Sci. 2001;42:1299–304.

    CAS  PubMed  Google Scholar 

  56. Beebe DC, Truscott RJW. Counterpoint: the lens fluid circulation model-A critical appraisal. Invest Ophthalmol Vis Sci. 2010;51:2306–10.

    PubMed Central  PubMed  Google Scholar 

  57. Ortwerth BJ, Chemoganskiy V, Olesen PR. Studies on singlet oxygen formation and UVA light-mediated photobleaching of the yellow chromophores in human lenses. Exp Eye Res. 2002;74:217–29.

    CAS  PubMed  Google Scholar 

  58. Brondsted AE, Lundeman JH, Kessel L. Short wavelength light filtering by the natural human lens and IOLs-implications for entrainment of circadian rhythm. Acta Ophthalmol. 2013;91:52–7.

    CAS  PubMed  Google Scholar 

  59. Mizdrak J, Hains PG, Truscott RJ, Jamie JF, Davies MJ. Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage. Free Radic Biol Med. 2008;44:1108–19.

    CAS  PubMed  Google Scholar 

  60. Ortwerth BJ, Casserly TA, Olesen PR. Singlet oxygen production correlates with His and Trp destruction in brunescent cataract water-insoluble proteins. Exp Eye Res. 1998;67:377–80.

    CAS  PubMed  Google Scholar 

  61. Linetsky M, James H-L, Ortwerth BJ. The generation of superoxide anion by the UVA irradiation. Exp Eye Res. 1996;63:67–74.

    CAS  PubMed  Google Scholar 

  62. Linetsky M, Ortwerth BJ. The generation of hydrogen peroxide by UVA irradiation of human lens proteins. Photochem Photobiol. 1995;62:87–93.

    CAS  PubMed  Google Scholar 

  63. Fuentealba D, Galvez M, Alarcón E, Lissi E, Silva E. Photosensitized activity of advanced glycation endproducts on tryptophan, glucose 6-phosphate dehydrogenase, human serum albumin and ascorbic acid evaluated al low oxygen pressure. Photochem Photobiol. 2007;83:563–9.

    CAS  PubMed  Google Scholar 

  64. De La Rochette A, Silva E, Birlouez-Aragon I, Manzini M, Edwards AM, Morliere P. Riboflavin photodegradation and photosensitizing effects are highly dependent on oxygen and ascorbate concentrations. Photochem Photobiol. 2000;72:815–20.

    Google Scholar 

  65. Nishikawa Y, Toyoshima Y, Kurata T. Identification of 3,4-dihydroxy-2-oxo-butanal (L-threosone) as an intermediate compound in oxidative degradation of dehydro-L-ascorbic acid and 2,3-diketo-L-gulonic acid in a deuterium oxide phosphate buffer. Biosci Biotechnol Biochem. 2001;65:1707–12.

    CAS  PubMed  Google Scholar 

  66. Kimoto E, Hideiko T, Ohmoto T, Choami M. Analysis of the transformation products of dehydro-L-ascorbic acid by ion-pairing high-performance liquid chromatography. Anal Biochem. 1993;214:38–44.

    CAS  PubMed  Google Scholar 

  67. Ortwerth BJ, Speaker JA, Prabakharam M, Lopez MG, Yinan E, Feather MS. Ascorbic acid glycation: the reactions of L-threose in lens tissue. Exp Eye Res. 1994;58:665–74.

    CAS  PubMed  Google Scholar 

  68. Fayle SE, Gerrard JA, Simmons L, Meade SJ, Reid EA, Johnston AC. Crosslinkage of proteins by dehydroascorbic acid and its degradation products. Food Chem. 2000;70:193–8.

    CAS  Google Scholar 

  69. Fuentealba D, Friguet B, Silva E. Advanced glycation endproducts induce photocrosslinking and oxidation of bovine lens proteins through type-I mechanism. Photochem Photobiol. 2009;85:185–94.

    CAS  PubMed  Google Scholar 

  70. Govindjee, Xu C, Schansker G, Van Rensen JJS. Chloroacetates as inhibitors of photosystem II: effects on electron acceptor site. J Photochem Photobiol B. 1997;37:107–17.

    CAS  Google Scholar 

  71. Vileno B, Lekka M, Sienkiewicz A, Marcoux P, Kulik AJ, Kasas S, Catsicas S, Graczyk A, Forró L. Singlet oxygen (1∆g)-mediated oxidation of cellular and subcellular components: ESR and AFM assays. J Phys Condens Matter. 2005;17:1471–82.

    Google Scholar 

  72. Silva E, Gaule J. Light-induced binding of riboflavin to lysozyme. Radiat Environ Biophys. 1977;14:303–10.

    CAS  PubMed  Google Scholar 

  73. Ávila F, Matus A, Fuentealba D, Lissi E, Friguet B, Silva E. Autosensitized oxidation of glycated bovine lens proteins irradiated with UVA-visible light at low oxygen concentration. Photochem Photobiol Sci. 2008;7:718–24.

    PubMed  Google Scholar 

  74. Huang M, Ellozy AR, Zhang L, Merriam J, Dillon J. The diffusion of oxygen in the mammalian lens. Invest Ophthalmol Vis Sci. 2001;42:S284.

    Google Scholar 

  75. Kanner J, Mendel H, Budowski P. Prooxidant and antioxidant effects of ascorbic acid and metal salts in a β-carotene-linoleate model system. J Food Sci. 1977;42:60–4.

    CAS  Google Scholar 

  76. Hunt JV, Bottoms MA, Mitchinson MJ. Oxidative alterations in the experimental glycation model of diabetes mellitus are due to protein-glucose adduct oxidation. Biochem J. 1993;291:529–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Ahmed N. Advanced glycation endproducts-role in pathology of diabetic complications. Diab Res Clin Pract. 2005;67:3–21.

    CAS  Google Scholar 

  78. Silva E. Sensitized photo-oxidation of amino acids in proteins. In: Eyzaguirre J, editor. Chemical modifications of enzymes. Active site studies. Chichester: Ellis Horwood; 1987.

    Google Scholar 

  79. Shacter E. Quantification and significance of protein oxidation in biological simples. Drug Metab Rev. 2000;32:307–26.

    CAS  PubMed  Google Scholar 

  80. Liggins J, Furth AJ. Role of protein-bond carbonyl groups in the formation of advanced glycation end products. Biochim Biophys Acta. 1997;1361:123–30.

    CAS  PubMed  Google Scholar 

  81. Aspée A, Lissi EA. Kinetics and mechanism of the chemiluminescence associated with the free radical-mediated oxidation of amino acids. Luminescence. 2000;15:273–82.

    PubMed  Google Scholar 

  82. Linetsky M, Ortwerth BJ. Quantitation of the singlet oxygen produced by UVA irradiation of human lens proteins. Photochem Photobiol. 1997;65:522–9.

    CAS  PubMed  Google Scholar 

  83. Kwan M, Niinikoshi J, Hunt TK. In vivo measurements of oxygen. Invest Ophthalmol. 1972;11:108–14.

    CAS  PubMed  Google Scholar 

  84. Eaton JW. Is the lens canned? Free Radic Biol Med. 1991;11:207–13.

    CAS  PubMed  Google Scholar 

  85. Ávila F, Friguet B, Silva E. Simultaneous chemical and photochemical protein crosslinking induced by irradiation of eye lens proteins in the presence of ascorbate: the photosensitizing role of an UVA-visible-absorbing decomposition product of vitamin C. Photochem Photobiol Sci. 2010;9:1351–8.

    PubMed  Google Scholar 

  86. Wannemacher CF, Spector A. Protein synthesis in the core of calf lens. Exp Eye Res. 1968;7:623–5.

    CAS  PubMed  Google Scholar 

  87. Harding JJ. Aggregation of proteins in human cataract. Ophthalmic Res. 1979;11:429–32.

    CAS  Google Scholar 

  88. Srivastava OP. Age-related increase in concentration and aggregation of degraded polypeptides in human lenses. Exp Eye Res. 1988;47:525–43.

    CAS  PubMed  Google Scholar 

  89. Satoh K. Age related changes in the structural proteins of human lens. Exp Eye Res. 1972;14:53–7.

    CAS  PubMed  Google Scholar 

  90. Truscott RJW, Augusteyn RC. Changes in human lens proteins during nuclear cataract formation. Exp Eye Res. 1977;24:159–70.

    CAS  PubMed  Google Scholar 

  91. Berman E. Biochemistry of the eye. New York: Plenum Press; 1991. p. 203–74.

    Google Scholar 

  92. Carrard G, Bulteau A, Petropolous I, Friguet B. Impairment of proteasome structure and function in aging. Int J Biochem Cell Biol. 2002;34:1461–74.

    CAS  PubMed  Google Scholar 

  93. Hosler M, Wang-Su S, Wagner B. Targeted disruption of specific steps of the ubiquitin-proteasome pathway by oxidation in lens epithelial cells. Int J Biochem Cell Biol. 2003;35:685–97.

    CAS  PubMed  Google Scholar 

  94. Shang F, Nowell T, Taylor A. Removal of oxidatively damaged proteins from lens cells by the ubiquitin-proteasome pathway. Exp Eye Res. 2001;73:229–38.

    CAS  PubMed  Google Scholar 

  95. Spector A, Ma W, Wang R, Kleiman N. Microperoxidases catalytically degrade reactive oxygen species and may be anti-cataract agents. Exp Eye Res. 1997;65:457–70.

    CAS  PubMed  Google Scholar 

  96. Grune T. Oxidative stress, aging and the proteasomal system. Biogerontology. 2000;1:31–40.

    CAS  PubMed  Google Scholar 

  97. Gaczynska M, Osmulski P, Ward W. Caretaker or undertaker? The role of proteasome in aging. Mech Ageing Dev. 2001;122:235–54.

    CAS  PubMed  Google Scholar 

  98. Orlowski M, Wilk S. Catalytic activities of the 20S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys. 2000;383:1–16.

    CAS  PubMed  Google Scholar 

  99. Wójcik C. Proteasomes in apoptosis: villains or guardians? Cell Mol Life Sci. 1999;56:908–17.

    PubMed  Google Scholar 

  100. Sorimachi H, Ishiura S, Suzuki K. Structure and physiological function of calpains. Biochem J. 1997;328:721–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Coux O, Tanaka K, Goldberg A. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–47.

    CAS  PubMed  Google Scholar 

  102. Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996;30:405–39.

    CAS  PubMed  Google Scholar 

  103. Shang F, Gong X, Palmer H, Nowell T, Taylor A. Age-related decline in ubiquitin conjugation in response to oxidative stress in the lens. Exp Eye Res. 1997;64:21–30.

    CAS  PubMed  Google Scholar 

  104. Shaojun Y, Wang S, Cai H, Wagner B. Changes in three types of ubiquitin mRNA and Ubiquitin-protein conjugate levels during lens development. Exp Eye Res. 2002;75:271–84.

    Google Scholar 

  105. Chung-Kenny K, Dawson-Valina L, Dawson-Ted M. The role of the ubiquitin-proteasomal pathway in Parkinson’s disease and other neurodegenerative disorders. Trends Neurosci. 2001;24:s7–14.

    Google Scholar 

  106. Vu P, Sakamoto K. Ubiquitin-mediated proteolysis and human disease. Mol Genet Metab. 2000;71:261–6.

    CAS  PubMed  Google Scholar 

  107. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH. The ubiquitin pathway in Parkinson’s disease. Nature. 1998;395:451–2.

    CAS  PubMed  Google Scholar 

  108. Checler F, Alves da Costa C, Ancolio K, Chevallier N, Lopez-Perez E, Marambaud P. Role of the proteasome in Alzheimer’s disease. Biochim Biophys Acta. 2000;1502:133–8.

    CAS  PubMed  Google Scholar 

  109. Muller S, Schwartz L. Ubiquitin in homeostasis, developments and disease. Bioessays. 1995;17:677–84.

    CAS  PubMed  Google Scholar 

  110. Friguet B, Bulteau A, Chondrogianni N, Conconi M, Petropoulos I. Protein degradation by the proteasome and its implications in aging. Ann N Y Acad Sci. 2000;908:143–54.

    CAS  PubMed  Google Scholar 

  111. Merker K, Stolzing A, Grune T. Proteolysis, caloric restriction and aging. Mech Ageing Dev. 2001;122:595–615.

    CAS  PubMed  Google Scholar 

  112. Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies K, Grune T. Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J. 1998;335:637–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Friguet B, Stadtman E, Sweda L. Modification of glucose-6-phosphate dehydrogenase by 4-hydroxynonenal. Formation of cross-linked protein than inhibits the multicatalytic protease. J Biol Chem. 1994;269:21639–43.

    CAS  PubMed  Google Scholar 

  114. Taylor A, Davies KJA. Protein oxidation and loss of protease activity may lead to cataract formation in the aged lens. Free Radic Biol Med. 1987;3:371–7.

    CAS  PubMed  Google Scholar 

  115. Andersson M, Sjöstrand J, Karlsson JO. Proteolytic cleavage of N-Succ-Leu-Leu-Val-Tyr-AMC by the proteasome in lens epithelium from clear and cataractous human lenses. Exp Eye Res. 1998;67:231–6.

    CAS  PubMed  Google Scholar 

  116. Andersson M, Sjöstrand J, Karlsson JO. Differential inhibition of three peptidase activities of the proteasome in human lens epithelium by health and oxidation. Exp Eye Res. 1999;69:129–38.

    CAS  PubMed  Google Scholar 

  117. Zetterberg M, Petersen A, Sjostrand J, Karlsson JO. Proteasome activity in human lens nuclei and correlation with age, gender and severity of cataract. Curr Eye Res. 2003;27:45–53.

    PubMed  Google Scholar 

  118. Petropoulos I, Conconi M, Wang X, Hoenel B, Bregegere F, Milner Y, Friguet B. Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol A Biol Sci Med Sci. 2000;55:B220–7.

    CAS  PubMed  Google Scholar 

  119. Viteri G, Carrard G, Birlouez-Aragón I, Silva E, Friguet B. Age-dependent protein modifications and declining proteasome activity in the human lens. Arch Biochem Biophys. 2004;427:197–203.

    CAS  PubMed  Google Scholar 

  120. Ikeda K, Nagai R, Sakamoto T, Sano H, Araki T, Sakata N, Nakayama H, Yoshida M, Ueda S, Horiuchi S. Immunochemical approaches to AGE-structures: characterization of anti-AGE antibodies. J Immunol Methods. 1998;215:95–104.

    CAS  PubMed  Google Scholar 

  121. Pereira P, Shang F, Hobbs M, Girao H, Taylor A. Lens fibers have a fully functional ubiquitin-proteasome pathway. Exp Eye Res. 2003;76:623–31.

    CAS  PubMed  Google Scholar 

  122. Louie JL, Kapphahn RJ, Ferrington DA. Proteasome function and protein oxidation in the aged retina. Exp Eye Res. 2002;75:271–84.

    CAS  PubMed  Google Scholar 

  123. Bulteau AL, Szweda L, Friguet B. Age-dependent declines in proteasome activity in the heart. Arch Biochem Biophys. 2002;397:298–304.

    CAS  PubMed  Google Scholar 

  124. Davies KJ. Degradation of oxidized proteins by the 20S proteasome. Biochimie. 2001;83:301–10.

    CAS  PubMed  Google Scholar 

  125. Friguet B, Szweda LI. Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett. 1997;405:21–5.

    CAS  PubMed  Google Scholar 

  126. Sitte N, Huber M, Grune T, Ladhoff A, Doecke WD, von Zglinicki T, Davies KJ. Proteasome inhibition by lipofucsin/ceroid during postmitotic aging of fibroblasts. FASEB J. 2000;14:1490–8.

    CAS  PubMed  Google Scholar 

  127. Wagner B, Margolis J. Age-dependent association of isolated bovine lens multicatalytic proteinase complex (proteasome) with heat-shock protein 90, an endogenous inhibitor. Arch Biochem Biophys. 1995;323:455–62.

    CAS  PubMed  Google Scholar 

  128. Conconi M, Szweda LI, Levine RL, Stadman E, Friguet B. Age-related decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heat-shock protein 90. Arch Biochem Biophys. 1996;331:232–40.

    CAS  PubMed  Google Scholar 

  129. Bulteau A, Verbeke P, Petropoulos I, Chafotte A, Friguet B. Proteasome inhibition in glyoxal-treated fibroblasts and resistance of glycated glucose-6-phosphate dehydrogenase to 20 S proteasome degradation in vitro. J Biol Chem. 2001;276:45662–8.

    CAS  PubMed  Google Scholar 

  130. Reddy V, Beyaz A. Inhibitors of the Maillard reaction and the AGE breakers as therapeutics for multiple diseases. Drug Discov Today. 2006;11:646–54.

    CAS  PubMed  Google Scholar 

  131. Ávila F, Trejo S, Baraibar MA, Friguet B, Silva E. Photosensitized reactions mediated by the major chromophore arising from glucose decomposition, result in oxidation and cross-linking of lens proteins and activation of the proteasome. Biochim Biophys Acta. 2012;1822:564–72.

    PubMed  Google Scholar 

  132. Frank O, Hofmann T. Characterization of key chromophores formed by nonenzimatic browning of hexoses and L-alanine by using the color activity concept. J Agric Food Chem. 2000;48:6303–11.

    CAS  PubMed  Google Scholar 

  133. Frank O, Heuberger S, Hofman T. Structure determination of a novel 3 (6H)-Pyranone chromophore and clarification of its formation from carbohydrates and primary amino acids. J Agric Food Chem. 2001;49:1595–600.

    CAS  PubMed  Google Scholar 

  134. Limacher A, Kerler J, Davidek T, Schmalzried F, Blank I. Formation of furan and methylfuran by Maillard-type reactions in model systems and food. J Agric Food Chem. 2008;56:3639–47.

    CAS  PubMed  Google Scholar 

  135. Pischetsrieder M. Chemistry of glucose and biochemical pathways of biological interest. Perit Dial Int. 2000;20:S26–230.

    PubMed  Google Scholar 

  136. Merkel PB, Kearns DR. Remarkable solvent effects on the lifetime of 1∆g oxygen. J Am Chem Soc. 1972;94:1029–30.

    CAS  Google Scholar 

  137. Catalgol B, Ziaja I, Breusing N, Jung T, Höhn A, Alpertunga B, Schroeder P, Chondrogianni T, Gonos ES, Petropoulos I, Friguet B, Klotz LO, Krutmann J, Grune T. The proteasome is an integral part of solar ultraviolet A radiation-induced gene expression. J Biol Chem. 2009;284:30076–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Lu C, Liu Y. Electron transfer oxidation of tryptophan and tyrosine by triplet states and oxidized radicals of flavin sensitizers: a laser flash photolysis study. Biochim Biophys Acta. 2002;1571:71–6.

    CAS  PubMed  Google Scholar 

  139. Conconi M, Petropoulos I, Emod I, Turlin E, Biville F, Friguet B. Protection from oxidative inactivation of the 20S proteasome by heat-shock proteína 90. Biochem J. 1998;333:407–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Sharman KK, Ortwerth BJ. Aminopeptidase III activity in normal and cataractous lenses. Curr Eye Res. 1986;5:373–80.

    Google Scholar 

  141. Santhoshkumar P, Udupa P, Murugesan R, Sharma KK. Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation. J Biol Chem. 2008;283:8477–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Han J, Schey KL. MALDI tissue imaging of ocular lens alpha-crystallin. Invest Ophthalmol Vis Sci. 2006;47:2990–6.

    PubMed  Google Scholar 

  143. Su SP, MacArthur JD, Aquilina JA. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach. Exp Eye Res. 2010;91:97–103.

    CAS  PubMed  Google Scholar 

  144. David LL, Shearer TR. Role of proteolysis in lenses: a review. Lens Eye Toxic Res. 1989;6:725–47.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These studies were supported by CONICYT (Chile), bi-national projects ECOS (France)/CONICYT (Chile), and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Silva, E., Ávila, F., Friguet, B. (2015). Photosensitized Oxidation of Lens Proteins Exposed to UVA-Visible Light at Low Oxygen Concentration: Its Effect on the Proteasome System. In: Babizhayev, M., Li, DC., Kasus-Jacobi, A., Žorić, L., Alió, J. (eds) Studies on the Cornea and Lens. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1935-2_14

Download citation

Publish with us

Policies and ethics