Skip to main content

Glutamine and Myostatin Expression in Muscle Wasting

  • Chapter
  • First Online:
Glutamine in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

The skeletal muscle has been considered for a long time just a protein storage tissue, despite the relevance of its contribution to whole body metabolism. Indeed, it contributes to regulate energy balance, heat production, and insulin sensitivity, also producing humoral mediators called myokines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2013;6:25–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Grounds MD, Radley HG, Gebski BL, et al. Implications of cross-talk between tumour necrosis factor and insulin-like growth factor-1 signalling in skeletal muscle. Clin Exp Pharmacol Physiol. 2008;35:846–51.

    Article  CAS  PubMed  Google Scholar 

  3. Costelli P, Muscaritoli M, Bonetto A, et al. Muscle myostatin signaling is enhanced in cancer cachexia. Eur J Clin Invest. 2008;38:531–8.

    Article  CAS  PubMed  Google Scholar 

  4. Bonetto A, Penna F, Minero V, et al. Glutamine prevents myostatin hyperexpression and protein hypercatabolism induced in C2C12 myotubes by tumor necrosis factor-α. Amino Acids. 2010;40:585–94.

    Article  PubMed  Google Scholar 

  5. Elliott B, Renshaw D, Getting S, et al. The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol. 2012;205:324–40.

    Article  CAS  Google Scholar 

  6. Aversa Z, Bonetto A, Penna F, et al. Changes in myostatin signaling in non weight-losing cancer patients. Ann Surg Oncol. 2012;19:1350–6.

    Article  PubMed  Google Scholar 

  7. Ma K, Mallidis C, Bhasin S, et al. Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab. 2003;285:E363–71.

    CAS  PubMed  Google Scholar 

  8. Yang W, Chen Y, Zhang Y, et al. Extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase pathway is involved in myostatin-regulated differentiation repression. Cancer Res. 2006;66:1320–6.

    Article  CAS  PubMed  Google Scholar 

  9. Huang Z, Chen D, Zhang K, et al. Regulation of myostatin signaling by c-Jun N-terminal kinase in C2C12 cells. Cell Signal. 2007;19:2286–95.

    Article  CAS  PubMed  Google Scholar 

  10. Hu S, Chen C, Sheng J, et al. Enhanced muscle growth by plasmid-mediated delivery of myostatin propeptide. J Biomed Biotechnol. 2010;2010:862591.

    PubMed Central  PubMed  Google Scholar 

  11. DaCosta Byfield S, Major C, et al. SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2004;65:744–52.

    Article  PubMed  Google Scholar 

  12. Benny Klimek ME, Aydogdu T, Link MJ, et al. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun. 2010;391:1548–54.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou X, Wang JL, Lu J, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 2010;142:531–43.

    Article  CAS  PubMed  Google Scholar 

  14. Morine KJ, Bish LT, Pendrak K, et al. Systemic myostatin inhibition via liver-targeted gene transfer in normal and dystrophic mice. PLoS One. 2010;5:e9176.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Minetti GC, Colussi C, Adami R, et al. Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nat Med. 2006;12:1147–50.

    Article  CAS  PubMed  Google Scholar 

  16. Bonetto A, Penna F, Minero GV, et al. Deacetylase inhibitors modulate the myostatin/follistatin axis without improving cachexia in tumor-bearing mice. Curr Cancer Drug Targ. 2009;9:608–16.

    Article  CAS  Google Scholar 

  17. Vamvini MT, Aronis KN, Chamberland JP, et al. Energy deprivation alters in a leptin- and cortisol-independent manner circulating levels of activin A and follistatin but not myostatin in healthy males. J Clin Endocrinol Metab. 2011;96:3416–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Brandt C, Nielsen AR, Fischer CP, et al. Plasma and muscle myostatin in relation to type 2 diabetes. PLoS One. 2012;7:e37236.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hittel DS, Berggren JR, Shearer J, et al. Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. Diabetes. 2009;58:30–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Saremi A, Gharakhanloo R, Sharghi S, et al. Effects of oral creatine and resistance training on serum myostatin and GASP-1. Mol Cell Endocrinol. 2010;317:25–30.

    Article  CAS  PubMed  Google Scholar 

  21. Paddon-Jones D. Interplay of stress and physical inactivity on muscle loss: nutritional countermeasures. J Nutr. 2006;136:2123–6.

    CAS  PubMed  Google Scholar 

  22. Bunn JA, Buford TW, Serra MC, et al. Protein and amino acid supplementation does not alter proteolytic gene expression following immobilization. J Nutr Metab. 2011;2011:539690.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Brooks NE, Cadena SM, Vannier E, et al. Effects of resistance exercise combined with essential amino acid supplementation and energy deficit on markers of skeletal muscle atrophy and regeneration during bed rest and active recovery. Muscle Nerve. 2010;42:927–35.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Roth E, Oehler R. Hypothesis: muscular glutamine deficiency in sepsis–a necessary step for a hibernation-like state? Nutrition. 2010;26:571–4.

    Article  CAS  PubMed  Google Scholar 

  25. Rhoads JM, Argenzio RA, Chen W, et al. l-glutamine stimulates intestinal cell proliferation and activates mitogen-activated protein kinases. Am J Physiol. 1997;272:G943–53.

    CAS  PubMed  Google Scholar 

  26. Tessitore L, Costelli P, Bonetti G, et al. Cancer cachexia, malnutrition, and tissue protein turnover in experimental animals. Arch Biochem Biophys. 1993;306:52–8.

    Article  CAS  PubMed  Google Scholar 

  27. Salehian B, Mahabadi V, Bilas J, et al. The effect of glutamine on prevention of glucocorticoid-induced skeletal muscle atrophy is associated with myostatin suppression. Metabolism. 2006;55:1239–47.

    Article  CAS  PubMed  Google Scholar 

  28. Yoshida S, Kaibara A, Ishibashi N, et al. Glutamine supplementation in cancer patients. Nutrition. 2001;17:766–8.

    Article  CAS  PubMed  Google Scholar 

  29. Meador BM, Huey KA. Glutamine preserves skeletal muscle force during an inflammatory insult. Muscle Nerve. 2009;40:1000–7.

    Article  CAS  PubMed  Google Scholar 

  30. Lambertucci AC, Lambertucci RH, Hirabara SM, et al. Glutamine supplementation stimulates protein-synthetic and inhibits protein-degradative signaling pathways in skeletal muscle of diabetic rats. PLoS One. 2012;7:e50390.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Dong Y, Pan JS, Zhang L. Myostatin suppression of akirin1 mediates glucocorticoid-induced satellite cell dysfunction. PLoS One. 2013;8:e58554.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Penna F, Costamagna D, Pin F, et al. Autophagic degradation contributes to muscle wasting in cancer cachexia. Am J Pathol. 2013;182:1367–78.

    Article  CAS  PubMed  Google Scholar 

  33. Bristot Silvestrin R, Bambini-Junior V, Galland F, et al. Animal model of autism induced by prenatal exposure to valproate: altered glutamate metabolism in the hippocampus. Brain Res. 2013;1495:52–60.

    Article  CAS  PubMed  Google Scholar 

  34. Sriram S, Subramanian S, Sathiakumar D, et al. Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-κB. Aging Cell. 2011;10:931–48.

    Article  CAS  PubMed  Google Scholar 

  35. Mastrocola R, Reffo P, Penna F, et al. Muscle wasting in diabetic and tumor-bearing rats: role of oxidative stress. Free Rad Biol Med. 2008;44:584–93.

    Article  CAS  PubMed  Google Scholar 

  36. Tsai PH, Liu JJ, Yeh CL, et al. Effects of glutamine supplementation on oxidative stress-related gene expression and antioxidant properties in rats with streptozotocin-induced type 2 diabetes. Br J Nutr. 2012;107:1112–8.

    Article  CAS  PubMed  Google Scholar 

  37. Lee JY, Hopkinson NS, Kemp PR. Myostatin induces autophagy in skeletal muscle in vitro. Biochem Biophys Res Commun. 2011;415:632–6.

    Article  CAS  PubMed  Google Scholar 

  38. Seiliez I, Taty Taty GC, Bugeon J, et al. Myostatin induces atrophy of trout myotubes through inhibiting the TORC1 signaling and promoting Ubiquitin-Proteasome and Autophagy-Lysosome degradative pathways. Gen Comp Endocrinol. 2013;186C:9–15.

    Article  Google Scholar 

  39. Lin TC, Chen YR, Kensicki E, et al. Autophagy: resetting glutamine-dependent metabolism and oxygen consumption. Autophagy. 2012;8:1477–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Miretti S, Martignani E, Accornero P, et al. Functional effect of mir-27b on myostatin expression: a relationship in piedmontese cattle with double-muscled phenotype. BMC Genomics. 2013;14:194.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Allen DL, Loh AS. Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle. Am J Physiol Cell Physiol. 2011;300:C124–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kukreti H, Amuthavalli K, Harikumar A, et al. Muscle-specific microRNA1 (miR1) targets heat shock protein 70 (HSP70) during dexamethasone-mediated atrophy. J Biol Chem. 2013;288:6663–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Drummond MJ, Glynn EL, Fry CS, et al. Essential amino acids increase microRNA-499, -208b, and -23a and downregulate myostatin and myocyte enhancer factor 2C mRNA expression in human skeletal muscle. J Nutr. 2009;139:2279–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kim H. Glutamine as an immunonutrient. Yonsei Med J. 2011;52:892–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Raspé C, Czeslick E, Weimann A, et al. Glutamine and alanine-induced differential expression of intracellular IL-6, IL-8, and TNF-α in LPS-stimulated monocytes in human whole-blood. Cytokine. 2013;62:52–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Penna Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Penna, F., Bonetto, A., Baccino, F.M., Costelli, P. (2015). Glutamine and Myostatin Expression in Muscle Wasting. In: Rajendram, R., Preedy, V., Patel, V. (eds) Glutamine in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1932-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1932-1_39

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1931-4

  • Online ISBN: 978-1-4939-1932-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics