Glutamine Protects GI Epithelial Tight Junctions

Chapter
Part of the Nutrition and Health book series (NH)

Abstract

l-Glutamine is the most abundant amino acid in blood stream accounting for 30–35 % of the amino acid nitrogen in plasma. It was classified as a non-essential amino acid because it can be readily synthesized in the body from glutamate by glutamine synthetase, which is expressed at high levels in skeletal muscle, liver, brain and stomach tissue. Intracellular concentration of l-glutamine ranges from 2 to 20 mM, and its concentration in the extracellular fluid varies from 0.5 to 0.8 mM. Under conditions of extreme physical exertion, trauma and severe infections, the rate of utilization of glutamine is more than its rate of synthesis, resulting in a significant decline in plasma glutamine concentration. Glutamine is an essential fuel for the gastrointestinal tract. It is required for the synthesis of proteins, nucleic acids and antioxidants, such as glutathione, and involved in the maintenance of acid–base balance with the release of ammonia during its metabolism. Under conditions of reduced plasma glutamine concentration, body depends on the exogenous glutamine to meet its requirements. Therefore, l-glutamine now is reclassified as a conditionally essential amino acid.

Keywords

Glutamine Intestine Barrier function Epithelium Tight junction Burn injury Total parenteral nutrition Enteral nutrition Endotoxemia Bacterial translocation 

Notes

Acknowledgements

Preparation of this article and some of the studies discussed in it are supported by the National Institutes of Health grants: DK55532 and AA12307.

References

  1. 1.
    Kimura RE. Glutamine oxidation by developing rat small intestine. Pediatr Res. 1987;21(2):214–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Darcy-Vrillon B, Posho L, Morel MT, Bernard F, Blachier F, Meslin JC, et al. Glucose, galactose, and glutamine metabolism in pig isolated enterocytes during development. Pediatr Res. 1994;36(2):175–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Potsic B, Holliday N, Lewis P, Samuelson D, DeMarco V, Neu J. Glutamine supplementation and deprivation: effect on artificially reared rat small intestinal morphology. Pediatr Res. 2002;52(3):430–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Yi GF, Allee GL, Knight CD, Dibner JJ. Impact of glutamine and Oasis hatchling supplement on growth performance, small intestinal morphology, and immune response of broilers vaccinated and challenged with Eimeria maxima. Poult Sci. 2005;84(2):283–93.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhong X, Zhang XH, Li XM, Zhou YM, Li W, Huang XX, et al. Intestinal growth and morphology is associated with the increase in heat shock protein 70 expression in weaning piglets through supplementation with glutamine. J Anim Sci. 2011;89(11):3634–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Tannuri U, Carrazza FR, Iriya K. The effects of glutamine-supplemented diet on the intestinal mucosa of the malnourished growing rat. Rev Hosp Clin Fac Med (SP). 2000;55(3):87–92.Google Scholar
  7. 7.
    Yi GF, Carroll JA, Allee GL, Gaines AM, Kendall DC, Usry JL, et al. Effect of glutamine and spray-dried plasma on growth performance, small intestinal morphology, and immune responses of Escherichia coli K88 + -challenged weaned pigs. J Anim Sci. 2005;83(3):634–43.PubMedGoogle Scholar
  8. 8.
    Wu G, Meier SA, Knabe DA. Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr. 1996;126(10):2578–84.PubMedGoogle Scholar
  9. 9.
    Rhoads JM, Keku EO, Bennett LE, Quinn J, Lecce JG. Development of L-glutamine-stimulated electroneutral sodium absorption in piglet jejunum. Am J Physiol. 1990;259(1 Pt 1):G99–107.PubMedGoogle Scholar
  10. 10.
    He Y, Sanderson IR, Walker WA. Uptake, transport and metabolism of exogenous nucleosides in intestinal epithelial cell cultures. J Nutr. 1994;124(10):1942–9.PubMedGoogle Scholar
  11. 11.
    Ko TC, Beauchamp RD, Townsend Jr CM, Thompson JC. Glutamine is essential for epidermal growth factor-stimulated intestinal cell proliferation. Surgery. 1993;114(2):147–53. discussion 53–4.PubMedGoogle Scholar
  12. 12.
    Rhoads M. Glutamine signaling in intestinal cells. J Parenter Enteral Nutr. 1999;23(5 Suppl):S38–40.CrossRefGoogle Scholar
  13. 13.
    Tremel H, Kienle B, Weilemann LS, Stehle P, Furst P. Glutamine dipeptide-supplemented parenteral nutrition maintains intestinal function in the critically ill. Gastroenterology. 1994;107(6):1595–601.PubMedGoogle Scholar
  14. 14.
    Nakamura E, Hagen S. Role of glutamine and arginase in protection against ammonia-induced cell death in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2002;283(6):75.Google Scholar
  15. 15.
    Jensen JC, Schaefer R, Nwokedi E, Bevans 3rd DW, Baker ML, Pappas AA, et al. Prevention of chronic radiation enteropathy by dietary glutamine. Ann Surg Oncol. 1994;1(2):157–63.PubMedCrossRefGoogle Scholar
  16. 16.
    Savarese D, Savy G, Vahdat L, Wischmeyer P, Corey B. Prevention of chemotherapy and radiation toxicity with glutamine. Cancer Treat Rev. 2003;29(6):501–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Bragg LE, Thompson JS, Rikkers LF. Influence of nutrient delivery on gut structure and function. Nutrition. 1991;7(4):237–43.PubMedGoogle Scholar
  18. 18.
    Inoue Y, Espat NJ, Frohnapple DJ, Epstein H, Copeland EM, Souba WW. Effect of total parenteral nutrition on amino acid and glucose transport by the human small intestine. Ann Surg. 1993;217(6):604–12. discussion 12-4.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Guerrant R, Oriá R, Moore S, Oriá M, Lima A. Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr Rev. 2008;66(9):487–505.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Lima NL, Soares AM, Mota RM, et al. Wasting and intestinal barrier function in children taking alanyl-glutaminyl-supplemented enteral formula. J Pediatr Gastroenterol Nutr. 2007;44(1):365–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Le Bacquer O, Laboisse C, Darmaun D. Glutamine preserves protein synthesis and paracellular permeability in Caco-2 cells submitted to “luminal fasting”. Am J Physiol Gastrointest Liver Physiol. 2003;285(1):G128–36.PubMedGoogle Scholar
  22. 22.
    Li N, Lewis P, Samuelson D, Liboni K, Neu J. Glutamine regulates Caco-2 cell tight junction proteins. Am J Physiol Gastrointest Liver Physiol. 2004;287(3):G726–33.PubMedCrossRefGoogle Scholar
  23. 23.
    Peng X, Yan H, You Z, Wang P, Wang S. Effects of enteral supplementation with glutamine granules on intestinal mucosal barrier function in severe burned patients. Burns. 2004;30(2):135–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhou Y, Jiang Z, Sun Y. Glutamine dipeptide enriched enteral nutrition improving gut permeability in sever burns. Zhonghua Yi Xue Za Zhi. 1999;79(11):825–7.PubMedGoogle Scholar
  25. 25.
    Zhou YP, Jiang ZM, Sun YH, Wang XR, Ma EL, Wilmore D. The effect of supplemental enteral glutamine on plasma levels, gut function, and outcome in severe burns: a randomized, double-blind, controlled clinical trial. J Parenter Enteral Nutr. 2003;27(4):241–5.CrossRefGoogle Scholar
  26. 26.
    Noyer CM, Simon D, Borczuk A, Brandt LJ, Lee MJ, Nehra V. A double-blind placebo-controlled pilot study of glutamine therapy for abnormal intestinal permeability in patients with AIDS. Am J Gastroenterol. 1998;93(6):972–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Lima AA, Brito LF, Ribeiro HB, Martins MC, Lustosa AP, Rocha EM, et al. Intestinal barrier function and weight gain in malnourished children taking glutamine supplemented enteral formula. J Pediatr Gastroenterol Nutr. 2005;40(1):28–35.PubMedCrossRefGoogle Scholar
  28. 28.
    Ding LA, Li JS. Effects of glutamine on intestinal permeability and bacterial translocation in TPN-rats with endotoxemia. World J Gastroenterol. 2003;9(6):1327–32.PubMedGoogle Scholar
  29. 29.
    Haque SM, Chen K, Usui N, Iiboshi Y, Okuyama H, Masunari A, et al. Alanyl-glutamine dipeptide-supplemented parenteral nutrition improves intestinal metabolism and prevents increased permeability in rats. Ann Surg. 1996;223(3):334–41.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Khan J, Iiboshi Y, Cui L, Wasa M, Sando K, Takagi Y, et al. Alanyl-glutamine-supplemented parenteral nutrition increases luminal mucus gel and decreases permeability in the rat small intestine. J Parenter Enteral Nutr. 1999;23(1):24–31.CrossRefGoogle Scholar
  31. 31.
    Li YS, Li JS, Jiang JW, Liu FN, Li N, Qin WS, et al. Glycyl-glutamine-enriched long-term total parenteral nutrition attenuates bacterial translocation following small bowel transplantation in the pig. J Surg Res. 1999;82(1):106–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Ma Y, Jiang Z, Bai M. The change of gut barrier function and gene expression after surgical stress and parenteral nutrition. Zhonghua Wai Ke Za Zhi. 1995;33(6):371–3.PubMedGoogle Scholar
  33. 33.
    Fujita T, Sakurai K. Efficacy of glutamine-enriched enteral nutrition in an experimental model of mucosal ulcerative colitis. Br J Surg. 1995;82(6):749–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Foitzik T, Stufler M, Hotz HG, Klinnert J, Wagner J, Warshaw AL, et al. Glutamine stabilizes intestinal permeability and reduces pancreatic infection in acute experimental pancreatitis. J Gastrointest Surg. 1997;1(1):40–6. discussion 6-7.PubMedGoogle Scholar
  35. 35.
    White JS, Hoper M, Parks RW, Clements WD, Diamond T. Glutamine improves intestinal barrier function in experimental biliary obstruction. Eur Surg Res. 2005;37(6):342–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Bai M, Jiang Z, Ma Y. Glutamine dipeptide enriched nutritional solutions attenuate bacterial translocation in rats after 60 % intestinal resections. Zhonghua Yi Xue Za Zhi. 1996;76(2):116–9.PubMedGoogle Scholar
  37. 37.
    Liu YW, Bai MX, Ma YX, Jiang ZM. Effects of alanyl-glutamine on intestinal adaptation and bacterial translocation in rats after 60 % intestinal resection. Clin Nutr. 1997;16(2):75–8.PubMedCrossRefGoogle Scholar
  38. 38.
    dos Santos R, Viana ML, Generoso SV, Arantes RE, Davisson Correia MI, Cardoso VN. Glutamine supplementation decreases intestinal permeability and preserves gut mucosa integrity in an experimental mouse model. J Parenter Enteral Nutr. 2010;34(4):408–13.CrossRefGoogle Scholar
  39. 39.
    Jiang JW, Ren ZG, Chen LY, Jiang L, Xie HY, Zhou L, et al. Enteral supplementation with glycyl-glutamine improves intestinal barrier function after liver transplantation in rats. Hepatobiliary Pancreat Dis Int. 2011;10(4):380–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Kozar RA, Schultz SG, Bick RJ, Poindexter BJ, DeSoignie R, Moore FA. Enteral glutamine but not alanine maintains small bowel barrier function after ischemia/reperfusion injury in rats. Shock. 2004;21(5):433–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Tazuke Y, Wasa M, Shimizu Y, Wang HS, Okada A. Alanyl-glutamine-supplemented parenteral nutrition prevents intestinal ischemia-reperfusion injury in rats. J Parenter Enteral Nutr. 2003;27(2):110–5.CrossRefGoogle Scholar
  42. 42.
    Fukatsu K, Ueno C, Hashiguchi Y, Hara E, Kinoshita M, Mochizuki H, et al. Glutamine infusion during ischemia is detrimental in a murine gut ischemia/reperfusion model. J Parenter Enteral Nutr. 2003;27(3):187–92. discussion 92.CrossRefGoogle Scholar
  43. 43.
    Omata J, Fukatsu K, Ueno C, Maeshima Y, Saitoh D, Mochizuki H. Intraluminal glutamine administration during ischemia worsens survival after gut ischemia-reperfusion. J Surg Res. 2007;143(2):260–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol. 2009;1(2):a002584.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Rao R. Oxidative stress-induced disruption of epithelial and endothelial tight junctions. Front Biosci. 2008;13:7210–26.PubMedCrossRefGoogle Scholar
  46. 46.
    DeMarco VG, Li N, Thomas J, West CM, Neu J. Glutamine and barrier function in cultured Caco-2 epithelial cell monolayers. J Nutr. 2003;133(7):2176–9.PubMedGoogle Scholar
  47. 47.
    Seth A, Basuroy S, Sheth P, Rao RK. L-Glutamine ameliorates acetaldehyde-induced increase in paracellular permeability in Caco-2 cell monolayer. Am J Physiol Gastrointest Liver Physiol. 2004;287(3):G510–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Basuroy S, Sheth P, Mansbach CM, Rao RK. Acetaldehyde disrupts tight junctions and adherens junctions in human colonic mucosa: protection by EGF and L-glutamine. Am J Physiol Gastrointest Liver Physiol. 2005;289(2):G367–75.PubMedCrossRefGoogle Scholar
  49. 49.
    Suzuki T, Seth A, Rao R. Role of phospholipase Cgamma-induced activation of protein kinase Cepsilon (PKCepsilon) and PKCbetaI in epidermal growth factor-mediated protection of tight junctions from acetaldehyde in Caco-2 cell monolayers. J Biol Chem. 2008;283(6):3574–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Basuroy S, Seth A, Elias B, Naren AP, Rao R. MAPK interacts with occludin and mediates EGF-induced prevention of tight junction disruption by hydrogen peroxide. Biochem J. 2006;393(Pt 1):69–77.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Li N, Neu J. Glutamine deprivation alters intestinal tight junctions via a PI3-K/Akt mediated pathway in Caco-2 cells. J Nutr. 2009;139(4):710–4.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysiologyUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations