Skip to main content

Branched Chain Amino Acids and Blood Ammonia

  • Chapter
  • First Online:
Book cover Branched Chain Amino Acids in Clinical Nutrition

Abstract

Virtuallyall organs are involved in the metabolism of ammonia and arterial ammonia levels are determined by an interaction between ammonia-producing and ammonia- removing organs.Under normal conditions, detoxification of ammonia predominantly takes place in the liver, whereas the major ammonia producing organs are the gut and the kidney. When the liver fails, ammonia homeostasis is profoundly altered and muscle tissue becomes the main alternative organ for at least temporary detoxification of ammonia.Branched–chain amino acids (BCAA; Isoleucine, leucine and valine) have attracted particular interest as they are believed to support this muscle ammonia detoxification. Liver disease represents the field in which the potential ammonia lowering effect of BCAA has been most intensely investigated. In this book chapter organ contribution to ammonia metabolism will be discussed and the potential changes that are induced by ingestion of BCAA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meijer AJ, Lamers WH, Chamuleau RA. Nitrogen metabolism and ornithine cycle function. Physiol Rev. 1990;70:701–48.

    CAS  PubMed  Google Scholar 

  2. Lacey JM, Wilmore DW. Is glutamine a conditionally essential amino acid? Nutr Rev. 1990;48:297–309.

    Article  CAS  PubMed  Google Scholar 

  3. Liaw SH, Kuo I, Eisenberg D. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site. Protein Sci. 1995;4:2358–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ytrebo LM, Sen S, Rose C, Ten Have GA, Davies NA, Hodges S, et al. Interorgan ammonia, glutamate, and glutamine trafficking in pigs with acute liver failure. Am J Physiol Gastrointest Liver Physiol. 2006;291:373–81.

    Article  Google Scholar 

  5. Dam G, Keiding S, Munk OL, Ott P, Buhl M, Vilstrup H, et al. Branched-chain amino acids increase arterial ammonia in spite of enhanced intrinsic muscle ammonia metabolism in patients with cirrhosis and healthy subjects. Am J Physiol Gastrointest Liver Physiol. 2011;301:269–77.

    Article  Google Scholar 

  6. Bessman SP, Bradley JE. Uptake of ammonia by muscle; its implications in ammoniagenic coma. N Engl J Med. 1955;253:1143–7.

    Article  CAS  PubMed  Google Scholar 

  7. Chatauret N, Desjardins P, Zwingmann C, Rose C, Rao KV, Butterworth RF. Direct molecular and spectroscopic evidence for increased ammonia removal capacity of skeletal muscle in acute liver failure. J Hepatol. 2006;44:1083–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ganda OP, Ruderman NB. Muscle nitrogen metabolism in chronic hepatic insufficiency. Metabolism. 1976;25:427–35.

    Article  CAS  PubMed  Google Scholar 

  9. Clemmesen JO, Kondrup J, Ott P. Splanchnic and leg exchange of amino acids and ammonia in acute liver failure. Gastroenterology. 2000;118:1131–9.

    Article  CAS  PubMed  Google Scholar 

  10. Mitchell S, Ellingson C, Coyne T, Hall L, Neill M, Christian N, et al. Genetic variation in the urea cycle: a model resource for investigating key candidate genes for common diseases. Hum Mutat. 2009;30:56–60.

    Article  CAS  PubMed  Google Scholar 

  11. Kaiser S, Gerok W, Haussinger D. Ammonia and glutamine metabolism in human liver slices: new aspects on the pathogenesis of hyperammonaemia in chronic liver disease. Eur J Clin Invest. 1988;18:535–42.

    Article  CAS  PubMed  Google Scholar 

  12. Hamberg O, Nielsen K, Vilstrup H. Effects of an increase in protein intake on hepatic efficacy for urea synthesis in healthy subjects and in patients with cirrhosis. J Hepatol. 1992;14:237–43.

    Article  CAS  PubMed  Google Scholar 

  13. Vilstrup H. Synthesis of urea after stimulation with amino acids: relation to liver function. Gut. 1980;21:990–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Fleming KE, Wanless IR. Glutamine synthetase expression in activated hepatocyte progenitor cells and loss of hepatocellular expression in congestion and cirrhosis. Liver Int. 2013;33(4):525–34.

    Article  CAS  PubMed  Google Scholar 

  15. Syrota A, Paraf A, Gaudebout C, Desgrez A. Significance of intra- and extrahepatic portasystemic shunting in survival of cirrhotic patients. Dig Dis Sci. 1981;26:878–85.

    Article  CAS  PubMed  Google Scholar 

  16. Rudman D, Galambos JT, Smith 3rd RB, Salam AA, Warren WD. Comparison of the effect of various amino acids upon the blood ammonia concentration of patients with liver disease. Am J Clin Nutr. 1973;26:916–25.

    CAS  PubMed  Google Scholar 

  17. Olde Damink SW, Jalan R, Redhead DN, Hayes PC, Deutz NE, Soeters PB. Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology. 2002;36:1163–71.

    Article  CAS  PubMed  Google Scholar 

  18. Windmueller HG, Spaeth AE. Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem. 1974;249:5070–9.

    CAS  PubMed  Google Scholar 

  19. Weber Jr FL, Veach GL. The importance of the small intestine in gut ammonium production in the fasting dog. Gastroenterology. 1979;77:235–40.

    PubMed  Google Scholar 

  20. Hansen BA, Vilstrup H. Increased intestinal hydrolysis of urea in patients with alcoholic cirrhosis. Scand J Gastroenterol. 1985;20:346–50.

    Article  CAS  PubMed  Google Scholar 

  21. Cooper AJ, Plum F. Biochemistry and physiology of brain ammonia. Physiol Rev. 1987;67:440–519.

    CAS  PubMed  Google Scholar 

  22. Dam G, Keiding S, Munk OL, Ott P, Vilstrup H, Bak LK, et al. Hepatic encephalopathy is associated with decreased cerebral oxygen metabolism and blood flow, not increased ammonia uptake. Hepatology. 2012;1:258–65.

    Google Scholar 

  23. Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology. 1999;29:648–53.

    Article  CAS  PubMed  Google Scholar 

  24. Glassford NJ, Farley KJ, Warrillow S, Bellomo R. Liver transplantation rapidly stops cerebral ammonia uptake in fulminant hepatic failure. Crit Care Resusc. 2011;13:113–8.

    PubMed  Google Scholar 

  25. Norenberg MD, Rao KV, Jayakumar AR. Mechanisms of ammonia-induced astrocyte swelling. Metab Brain Dis. 2005;20:303–18.

    Article  CAS  PubMed  Google Scholar 

  26. Welbourne TC, Childress D, Givens G. Renal regulation of interorgan glutamine flow in metabolic acidosis. Am J Physiol. 1986;251:859–66.

    Google Scholar 

  27. Halperin ML, Kamel KS, Ethier JH, Stinebaugh BJ, Jungas RL. Biochemistry and physiology of ammonium excretion. 2nd ed. New York: Raven Press Ltd; 1992.

    Google Scholar 

  28. Welters CF, Deutz NE, Dejong CH, Soeters PB. Enhanced renal vein ammonia efflux after a protein meal in the pig. J Hepatol. 1999;31:489–96.

    Article  CAS  PubMed  Google Scholar 

  29. Olde Damink SW, Dejong CH, Deutz NE, Redhead DN, Hayes PC, Soeters PB, Jalan R. Kidney plays a major role in ammonia homeostasis after portasystemic shunting in patients with cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2006;291:189–94.

    Article  Google Scholar 

  30. Weiner ID, Verlander JW. Role of NH3 and NH4+ transporters in renal acid-base transport. Am J Physiol Renal Physiol. 2011;300:11–23.

    Article  Google Scholar 

  31. Owen EE, Johnson JH, Tyor MP. The effect of induced hyperammonemia on renal ammonia metabolism. J Clin Invest. 1961;40:215–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lund P. A radiochemical assay for glutamine synthetase, and activity of the enzyme in rat tissues. Biochem J. 1970;118:35–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Lockwood AH, McDonald JM, Reiman RE, Gelbard AS, Laughlin JS, Duffy TE, Plum F. The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia. J Clin Invest. 1979;63:449–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wahren J, Felig P. Influence of protein ingestion on the amino acid metabolism in diabetes mellitus. Journ Annu Diabetol Hotel Dieu. 1976;7–20.

    Google Scholar 

  35. Deferrari G, Garibotto G, Robaudo C, Sala M, Tizianello A. Splanchnic exchange of amino acids after amino acid ingestion in patients with chronic renal insufficiency. Am J Clin Nutr. 1988;48:72–83.

    CAS  PubMed  Google Scholar 

  36. Shinnick FL, Harper AE. Branched-chain amino acid oxidation by isolated rat tissue preparations. Biochim Biophys Acta. 1976;437:477–86.

    Article  CAS  PubMed  Google Scholar 

  37. Sears DD, Hsiao G, Hsiao A, Yu JG, Courtney CH, Ofrecio JM, et al. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization. Proc Natl Acad Sci U S A. 2009;106:18745–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ferrando AA, Williams BD, Stuart CA, Lane HW, Wolfe RR. Oral branched-chain amino acids decrease whole-body proteolysis. JPEN J Parenter Enteral Nutr. 1995;19:47–54.

    Article  CAS  PubMed  Google Scholar 

  39. Atherton PJ, Smith K, Etheridge T, Rankin D, Rennie MJ. Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids. 2010;38:1533–9.

    Article  CAS  PubMed  Google Scholar 

  40. Hayashi M, Ohnishi H, Kawade Y, Muto Y, Takahashi Y. Augmented utilization of branched-chain amino acids by skeletal muscle in decompensated liver cirrhosis in special relation to ammonia detoxication. Gastroenterol Jpn. 1981;16:64–70.

    CAS  PubMed  Google Scholar 

  41. Wang X, Price SR. Differential regulation of branched-chain alpha-ketoacid dehydrogenase kinase expression by glucocorticoids and acidification in LLC-PK1-GR101 cells. Am J Physiol Renal Physiol. 2004;286:504–8.

    Article  Google Scholar 

  42. Kuhlmann MK, Kopple JD. Amino acid metabolism in the kidney. Semin Nephrol. 1990;10:445–57.

    CAS  PubMed  Google Scholar 

  43. Tizianello A, Deferrari G, Garibotto G, Robaudo C, Lutman M, Passerone G, Bruzzone M. Branched-chain amino acid metabolism in chronic renal failure. Kidney Int Suppl. 1983;16:17–22.

    CAS  Google Scholar 

  44. Olde Damink SW, Jalan R, Deutz NE, Dejong CH, Redhead DN, Hynd P, et al. Isoleucine infusion during “simulated” upper gastrointestinal bleeding improves liver and muscle protein synthesis in cirrhotic patients. Hepatology. 2007;45:560–8.

    Article  CAS  PubMed  Google Scholar 

  45. Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT. Hepatic encephalopathy–definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology. 2002;35:716–21.

    Article  PubMed  Google Scholar 

  46. Hahn M, Massen O, Nencki M, Pavlov J. Die Eck’sche fistel zwischen der unteren hohlvene und der pfortadre und ihre folgen für den organismus. Archiv für Experimentelle Pathologie und Pharmakologie. 1893;32:161–210.

    Google Scholar 

  47. Müting D, Wortmann V. Amino acid metabolism in liver diseases. Deutsch Med Wochenschr. 1956;81:1853–6.

    Article  Google Scholar 

  48. Fischer JE, Rosen HM, Ebeid AM, James JH, Keane JM, Soeters PB. The effect of normalization of plasma amino acids on hepatic encephalopathy in man. Surgery. 1976;80:77–91.

    CAS  PubMed  Google Scholar 

  49. Morgan MY, Milsom JP, Sherlock S. Plasma ratio of valine, leucine and isoleucine to phenylalanine and tyrosine in liver disease. Gut. 1978;19:1068–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Marchesini G, Forlani G, Zoli M, Angiolini A, Scolari MP, Bianchi FB, Pisi E. Insulin and glucagon levels in liver cirrhosis. Relationship with plasma amino acid imbalance of chronic hepatic encephalopathy. Dig Dis Sci. 1979;24:594–601.

    Article  CAS  PubMed  Google Scholar 

  51. Yamato M, Muto Y, Yoshida T, Kato M. Clearance rate of plasma Branched-chain amino acids correlates significantly with blood ammonia level in patients with liver cirrhosis. Int Hepatol Commun. 1995; 3:91–96.

    Google Scholar 

  52. Iob V, Coon WW, Sloan M. Altered clearance of free amino acids from plasma of patients with cirrhosis of the liver. J Surg Res. 1966;6:233–9.

    Article  CAS  PubMed  Google Scholar 

  53. Marchesini G, Bianchi GP, Vilstrup H, Checchia GA, Patrono D, Zoli M. Plasma clearances of branched-chain amino acids in control subjects and in patients with cirrhosis. J Hepatol. 1987;4:108–17.

    Article  CAS  PubMed  Google Scholar 

  54. Leweling H, Breitkreutz R, Behne F, Staedt U, Striebel JP, Holm E. Hyperammonemia-induced depletion of glutamate and branched-chain amino acids in muscle and plasma. J Hepatol. 1996;25:756–62.

    Article  CAS  PubMed  Google Scholar 

  55. Holecek M, Kandar R, Sispera L, Kovarik M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: different sensitivity of red and white muscle. Amino Acids. 2011;40:575–84.

    Article  CAS  PubMed  Google Scholar 

  56. Gluud LL, Dam G, Borre M, Les I, Cordoba J, Marchesini G, Aagaard NK, Vilstrup H. Lactulose, rifaximin or branched chain amino acids for hepatic encephalopathy: what is the evidence? Metab Brain Dis. 2013;28(2):221–5. PMID: 23275147.

    Article  CAS  PubMed  Google Scholar 

  57. Marchesini G, Dioguardi FS, Bianchi GP, Zoli M, Bellati G, Roffi L, et al. Long-term oral branched-chain amino acid treatment in chronic hepatic encephalopathy. A randomized double-blind casein-controlled trial. The Italian Multicenter Study Group. J Hepatol. 1990;11:92–101.

    Article  CAS  PubMed  Google Scholar 

  58. Marchesini G, Bianchi G, Merli M, Amodio P, Panella C, Loguercio C, et al. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial. Gastroenterology. 2003;124:1792–801.

    Article  CAS  PubMed  Google Scholar 

  59. Muto Y, Sato S, Watanabe A, Moriwaki H, Suzuki K, Kato A, et al. Effects of oral branched-chain amino acid granules on event-free survival in patients with liver cirrhosis. Clin Gastroenterol Hepatol. 2005;3:705–13.

    Article  CAS  PubMed  Google Scholar 

  60. Tischler ME, Desautels M, Goldberg AL. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem. 1982;257:1613–21.

    CAS  PubMed  Google Scholar 

  61. Tomiya T, Inoue Y, Yanase M, Arai M, Ikeda H, Tejima K, et al. Leucine stimulates the secretion of hepatocyte growth factor by hepatic stellate cells. Biochem Biophys Res Commun. 2002;297:1108–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gitte Dam M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dam, G., Ott, P., Aagaard, N.K., Gluud, L.L., Vilstrup, H. (2015). Branched Chain Amino Acids and Blood Ammonia. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1923-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1923-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1922-2

  • Online ISBN: 978-1-4939-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics