Regulation of Liver Glucose Metabolism by the Metabolic Sensing of Leucine in the Hypothalamus

Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Amino acids exert powerful effects on insulin action and glucose metabolism through direct (substrate-like) as well indirect (hormonally mediated) mechanisms. The majority of these actions are mediated by tissues such as the skeletal muscle and the liver. In this chapter we discuss evidence indicating that leucine improves insulin action and liver glucose metabolism through a metabolic sensing network in the mediobasal hypothalamus (MBH). Leucine is metabolized in the MBH to generate a neurogenic signal that is relayed to the liver via the vagus nerve to modulate the partition of glucose fluxes resulting in an overall decrease of glucose output. We further postulate that the faltering of this central sensing mechanism leads to hyperglycemia suggesting that hypothalamic leucine sensing is required to maintain euglycemia. Failure of this sensing mechanism could be a contributing factor to the development of diabetes.

Keywords

Leucine Mediobasal hypothalamus Glucose homeostasis Nutrient sensing Liver glucose metabolism Brain-liver circuit Branched chain amino acids Insulin action Diabetes 

References

  1. 1.
    Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, Leopold P. A nutrient sensor mechanism controls Drosophila growth. Cell. 2003;114:739–49.PubMedCrossRefGoogle Scholar
  2. 2.
    Cutler NS, Pan X, Heitman J, Cardenas ME. The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol Biol Cell. 2001;12:4103–13.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Nobukuni T, Joaquin M, Roccio M, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A. 2005;102:14238–43.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Rossetti L, Rothman DL, DeFronzo RA, Shulman GI. Effect of dietary protein on in vivo insulin action and liver glycogen repletion. Am J Physiol. 1989;257:E212–9.PubMedGoogle Scholar
  5. 5.
    Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR. Bidirectional modulation of insulin action by amino acids. J Clin Invest. 1998;101:1519–29.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Nuttall FQ, Gannon MC, Saeed A, Jordan K, Hoover H. The metabolic response of subjects with type 2 diabetes to a high-protein, weight-maintenance diet. J Clin Endocrinol Metab. 2003;88:3577–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Gannon MC, Nuttall FQ, Saeed A, Jordan K, Hoover H. An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes. Am J Clin Nutr. 2003;78:734–41.PubMedGoogle Scholar
  8. 8.
    Cota D, Proulx K, Smith KA, et al. Hypothalamic mTOR signaling regulates food intake. Science. 2006;312:927–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Blouet C, Jo YH, Li X, Schwartz GJ. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci. 2009;29:8302–11.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Zhang Y, Guo K, LeBlanc RE, Loh D, Schwartz GJ, Yu YH. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes. 2007;56:1647–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Guo K, Yu YH, Hou J, Zhang Y. Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus. Nutr Metab (Lond). 2010;7:57.CrossRefGoogle Scholar
  12. 12.
    Floyd Jr JC, Fajans SS, Conn JW, Knopf RF, Rull J. Stimulation of insulin secretion by amino acids. J Clin Invest. 1966;45:1487–502.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ohneda A, Parada E, Eisentraut AM, Unger RH. Characterization of response of circulating glucagon to intraduodenal and intravenous administration of amino acids. J Clin Invest. 1968;47:2305–22.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Roden M, Perseghin G, Petersen KF, et al. The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. J Clin Invest. 1996;97:642–8.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Felig P. Amino acid metabolism in man. Annu Rev Biochem. 1975;44:933–55.PubMedCrossRefGoogle Scholar
  16. 16.
    Flegal KM, Carroll MD, Ogden CL, Johnson CL. Prevalence and trends in obesity among US adults, 1999-2000. JAMA. 2002;288:1723–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Ginter E, Simko V. Type 2 diabetes mellitus, pandemic in 21st century. Adv Exp Med Biol. 2012;771:42–50.PubMedGoogle Scholar
  18. 18.
    Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404:661–71.PubMedGoogle Scholar
  19. 19.
    Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8:1376–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Schwartz MW, Porte Jr D. Diabetes, obesity, and the brain. Science. 2005;307:375–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Hu Z, Cha SH, Chohnan S, Lane MD. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc Natl Acad Sci U S A. 2003;100:12624–9.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    He W, Lam TK, Obici S, Rossetti L. Molecular disruption of hypothalamic nutrient sensing induces obesity. Nat Neurosci. 2006;9:227–33.PubMedCrossRefGoogle Scholar
  23. 23.
    Lam TK, Pocai A, Gutierrez-Juarez R, et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med. 2005;11:320–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science. 2005;309:943–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002;51:271–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Lam TK, Gutierrez-Juarez R, Pocai A, et al. Brain glucose metabolism controls the hepatic secretion of triglyceride-rich lipoproteins. Nat Med. 2007;13:171–80.PubMedCrossRefGoogle Scholar
  27. 27.
    Su Y, Lam TK, He W, et al. Hypothalamic leucine metabolism regulates liver glucose production. Diabetes. 2012;61:85–93.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Arrieta-Cruz I, Su Y, Knight CM, Lam TK, Gutierrez-Juarez R. Evidence for a role of proline and hypothalamic astrocytes in the regulation of glucose metabolism in rats. Diabetes. 2013;62:1152–8.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Smith QR. Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr. 2000;130:1016S–22.PubMedGoogle Scholar
  30. 30.
    Choi YH, Fletcher PJ, Anderson GH. Extracellular amino acid profiles in the paraventricular nucleus of the rat hypothalamus are influenced by diet composition. Brain Res. 2001;892:320–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Lynch CJ, Halle B, Fujii H, et al. Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR. Am J Physiol Endocrinol Metab. 2003;285:E854–63.PubMedGoogle Scholar
  32. 32.
    Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM. A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr. 1998;68:72–81.PubMedGoogle Scholar
  33. 33.
    Gao Z, Young RA, Li G, et al. Distinguishing features of leucine and alpha-ketoisocaproate sensing in pancreatic beta-cells. Endocrinology. 2003;144:1949–57.PubMedCrossRefGoogle Scholar
  34. 34.
    Harris RA, Paxton R, DePaoli-Roach AA. Inhibition of branched chain alpha-ketoacid dehydrogenase kinase activity by alpha-chloroisocaproate. J Biol Chem. 1982;257:13915–8.PubMedGoogle Scholar
  35. 35.
    Pocai A, Lam TK, Gutierrez-Juarez R, et al. Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005;434:1026–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J. Sur1 knockout mice. A model for K(ATP) channel-independent regulation of insulin secretion. J Biol Chem. 2000;275:9270–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Colombo JP, Cervantes H, Kokorovic M, Pfister U, Perritaz R. Effect of different protein diets on the distribution of amino acids in plasma, liver and brain in the rat. Ann Nutr Metab. 1992;36:23–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Peters JC, Harper AE. Adaptation of rats to diets containing different levels of protein: effects on food intake, plasma and brain amino acid concentrations and brain neurotransmitter metabolism. J Nutr. 1985;115:382–98.PubMedGoogle Scholar
  39. 39.
    Block KP, Harper AE. High levels of dietary amino and branched-chain alpha-keto acids alter plasma and brain amino acid concentrations in rats. J Nutr. 1991;121:663–71.PubMedGoogle Scholar
  40. 40.
    Tremblay F, Krebs M, Dombrowski L, et al. Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes. 2005;54:2674–84.PubMedCrossRefGoogle Scholar
  41. 41.
    She P, Reid TM, Bronson SK, et al. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab. 2007;6:181–94.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Sherwin RS. Effect of starvation on the turnover and metabolic response to leucine. J Clin Invest. 1978;61:1471–81.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Nair KS, Matthews DE, Welle SL, Braiman T. Effect of leucine on amino acid and glucose metabolism in humans. Metabolism. 1992;41:643–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–53.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Morgan K, Obici S, Rossetti L. Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J Biol Chem. 2004;279:31139–48.PubMedCrossRefGoogle Scholar
  47. 47.
    McAuley KA, Hopkins CM, Smith KJ, et al. Comparison of high-fat and high-protein diets with a high-carbohydrate diet in insulin-resistant obese women. Diabetologia. 2005;48:8–16.PubMedCrossRefGoogle Scholar
  48. 48.
    Boden G, Sargrad K, Homko C, Mozzoli M, Stein TP. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann Intern Med. 2005;142:403–11.PubMedCrossRefGoogle Scholar
  49. 49.
    McAuley KA, Smith KJ, Taylor RW, McLay RT, Williams SM, Mann JI. Long-term effects of popular dietary approaches on weight loss and features of insulin resistance. Int J Obes (Lond). 2006;30:342–9.CrossRefGoogle Scholar
  50. 50.
    Kimura K, Nakamura Y, Inaba Y, et al. Histidine augments the suppression of hepatic glucose production by central insulin action. Diabetes. 2013;62:2266.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Medicine and Diabetes Research Center, Albert Einstein College of MedicineYeshiva UniversityBronxUSA

Personalised recommendations