Metabolism of BCAAs

Part of the Nutrition and Health book series (NH)


The three branched chain amino acids are unique in that the first catabolic step does not occur in the liver. Leucine, isoleucine, and valine share the first two catabolic enzymes—branched chain aminotransferase (BCAT) and branched chain ketoacid dehydrogenase (BCKD). Both BCAT isoforms use Vitamin B-6 cofactors as temporary acceptors of the α-amino group during the process of aminating α-ketoglutarate, which becomes glutamate. The deaminated BCAAs are known as BCKAs, and can be reaminated into their BCAA form. The next step in BCAA catabolism, the decarboxylation of the BCKAs, is irreversible. In some tissues, the mitochondrial isoform of BCAT (BCATm), appears to form a metabolon with BCKD, which is a physical relationship between the BCATm enzyme and the BCKD enzyme complex. This facilitates the transfer of substrates and increases the efficiency of the reactions. After decarboxylation of the BCKA, the catabolic pathways for the three BCAA precursors diverge, utilizing different enzymes and processes. Disruptions in BCAA metabolism, primarily occurring in the first two steps, can cause a number of severe metabolic disorders. Additionally, changes in both BCAAs and BCAA enzymes have been implicated in the pathophysiology of TBI.


Traumatic brain injury BCATm BCKD Astroglial-neuronal nitrogen cycle Transamination Michaelis constant Nitrogen 


  1. 1.
    Marchesini G, Bianchi GP, Vilstrup H, Capelli M, Zoli M, Pisi E. Elimination of infused branched-chain amino-acids from plasma of patients with non-obese type 2 diabetes mellitus. Clin Nutr. 1991;10(2):105.PubMedCrossRefGoogle Scholar
  2. 2.
    Lang CH, Lynch CJ, Vary TC. BCATm deficiency ameliorates endotoxin-induced decrease in muscle protein synthesis and improves survival in septic mice. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R935.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Perez-Villasenor G, Tovar AR, Moranchel AH, Hernandez-Pando R, Hutson SM, Torres N. Mitochondrial branched chain aminotransferase gene expression in AS-30D hepatoma rat cells and during liver regeneration after partial hepatectomy in rat. Life Sci. 2005;78(4):334.PubMedCrossRefGoogle Scholar
  4. 4.
    Richardson MA, Small AM, Read LL, Chao HM, Clelland JD. Branched chain amino acid treatment of tardive dyskinesia in children and adolescents. J Clin Psychiatry. 2004;65(1):92.PubMedCrossRefGoogle Scholar
  5. 5.
    Rossi Fanelli F, Cangiano C, Capocaccia L, Cascino A, Ceci F, Muscaritoli M, Giunchi G. Use of branched chain amino acids for treating hepatic encephalopathy: clinical experiences. Gut. 1986;27 Suppl 1:111.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Berkich DA, Ola MS, Cole J, Sweatt AJ, Hutson SM, LaNoue KF. Mitochondrial transport proteins of the brain. J Neurosci Res. 2007;85(15):3367.PubMedCrossRefGoogle Scholar
  7. 7.
    Bixel M, Shimomura Y, Hutson S, Hamprecht B. Distribution of key enzymes of branched-chain amino acid metabolism in glial and neuronal cells in culture. J Histochem Cytochem. 2001;49(3):407.PubMedCrossRefGoogle Scholar
  8. 8.
    Cole JT, Sweatt AJ, Hutson SM. Expression of mitochondrial branched-chain aminotransferase and alpha-keto-acid dehydrogenase in rat brain: implications for neurotransmitter metabolism. Front Neuroanat. 2012;6:18.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bixel MG, Hutson SM, Hamprecht B. Cellular distribution of branched-chain amino acid aminotransferase isoenzymes among rat brain glial cells in culture. J Histochem Cytochem. 1997;45(5):685.PubMedCrossRefGoogle Scholar
  10. 10.
    Castellano S, Casarosa S, Sweatt AJ, Hutson SM, Bozzi Y. Expression of cytosolic branched chain aminotransferase (BCATc) mRNA in the developing mouse brain. Gene Expr Patterns. 2007;7(4):485.PubMedCrossRefGoogle Scholar
  11. 11.
    Garcia-Espinosa MA, Wallin R, Hutson SM, Sweatt AJ. Widespread neuronal expression of branched-chain aminotransferase in the CNS: implications for leucine/glutamate metabolism and for signaling by amino acids. J Neurochem. 2007;100(6):1458.PubMedGoogle Scholar
  12. 12.
    Sweatt AJ, Garcia-Espinosa MA, Wallin R, Hutson SM. Branched-chain amino acids and neurotransmitter metabolism: expression of cytosolic branched-chain aminotransferase (BCATc) in the cerebellum and hippocampus. J Comp Neurol. 2004;477(4):360.PubMedCrossRefGoogle Scholar
  13. 13.
    Brosnan JT, Brosnan ME. Branched-chain amino acids: enzyme and substrate regulation. J Nutr. 2006;136(1 Suppl):207S.PubMedGoogle Scholar
  14. 14.
    Drown PM, Torres N, Tovar AR, Davoodi J, Hutson SM. Use of sulfhydryl reagents to investigate branched chain alpha-keto acid transport in mitochondria. Biochim Biophys Acta. 2000;1468(1–2):273.PubMedCrossRefGoogle Scholar
  15. 15.
    Yudkoff M, Daikhin Y, Grunstein L, Nissim I, Stern J, Pleasure D. Astrocyte leucine metabolism: significance of branched-chain amino acid transamination. J Neurochem. 1996;66(1):378.PubMedCrossRefGoogle Scholar
  16. 16.
    Yudkoff M, Daikhin Y, Lin ZP, Nissim I, Stern J, Pleasure D. Interrelationships of leucine and glutamate metabolism in cultured astrocytes. J Neurochem. 1994;62(3):1192.PubMedCrossRefGoogle Scholar
  17. 17.
    Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Lazarow A. Brain amino acid requirements and toxicity: the example of leucine. J Nutr. 2005;135(6 Suppl):1531S.PubMedGoogle Scholar
  18. 18.
    Islam MM, Wallin R, Wynn RM, Conway M, Fujii H, Mobley JA, Chuang DT, Hutson SM. A novel branched-chain amino acid metabolon. Protein-protein interactions in a supramolecular complex. J Biol Chem. 2007;282(16):11893.PubMedCrossRefGoogle Scholar
  19. 19.
    She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007;293(6):E1552.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Lang CH, Frost RA, Deshpande N, Kumar V, Vary TC, Jefferson LS, Kimball SR. Alcohol impairs leucine-mediated phosphorylation of 4E-BP1, S6K1, eIF4G, and mTOR in skeletal muscle. Am J Physiol Endocrinol Metab. 2003;285(6):E1205.PubMedGoogle Scholar
  21. 21.
    Lynch CJ. Role of leucine in the regulation of mTOR by amino acids: revelations from structure-activity studies. J Nutr. 2001;131(3):861S.PubMedGoogle Scholar
  22. 22.
    Lynch CJ, Halle B, Fujii H, Vary TC, Wallin R, Damuni Z, Hutson SM. Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR. Am J Physiol Endocrinol Metab. 2003;285(4):E854.PubMedGoogle Scholar
  23. 23.
    Islam MM, Nautiyal M, Wynn RM, Mobley JA, Chuang DT, Hutson SM. The branched chain amino acid (BCAA) metabolon: interation of glutamate dehydrogenase with the mitochondrial branched chain aminotransferase (BCATm). J Biol Chem. 2010;285(1):265–76.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Sweatt AJ, Wood M, Suryawan A, Wallin R, Willingham MC, Hutson SM. Branched-chain amino acid catabolism: unique segregation of pathway enzymes in organ systems and peripheral nerves. Am J Physiol Endocrinol Metab. 2004;286(1):E64.PubMedCrossRefGoogle Scholar
  25. 25.
    Goichon A, Chan P, Lecleire S, Coquard A, Cailleux AF, Walrand S, Lerebours E, Vaudry D, Dechelotte P, Coeffier M. An enteral leucine supply modulates human duodenal mucosal proteome and decreases the expression of enzymes involved in fatty acid beta-oxidation. J Proteomics. 2013;78:535.PubMedCrossRefGoogle Scholar
  26. 26.
    DeSantiago S, Torres N, Suryawan A, Tovar AR, Hutson SM. Regulation of branched-chain amino acid metabolism in the lactating rat. J Nutr. 1998;128(7):1165.PubMedGoogle Scholar
  27. 27.
    Dillon EL. Nutritionally essential amino acids and metabolic signaling in aging. Amino Acids. 2013;45(3):431–41.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Faure M, Glomot F, Papet I. Branched-chain amino acid aminotransferase activity decreases during development in skeletal muscles of sheep. J Nutr. 2001;131(5):1528.PubMedGoogle Scholar
  29. 29.
    Pelletier V, Marks L, Wagner DA, Hoerr RA, Young VR. Branched-chain amino acid interactions with reference to amino acid requirements in adult men: leucine metabolism at different valine and isoleucine intakes. Am J Clin Nutr. 1991;54(2):402.PubMedGoogle Scholar
  30. 30.
    Purpera MN, Shen L, Taghavi M, Munzberg H, Martin RJ, Hutson SM, Morrison CD. Impaired branched chain amino acid metabolism alters feeding behavior and increases orexigenic neuropeptide expression in the hypothalamus. J Endocrinol. 2012;212(1):85.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Castellano S, Macchi F, Scali M, Huang JZ, Bozzi Y. Cytosolic branched chain aminotransferase (BCATc) mRNA is up-regulated in restricted brain areas of BDNF transgenic mice. Brain Res. 2006;1108(1):12.PubMedCrossRefGoogle Scholar
  32. 32.
    Mersey BD, Jin P, Danner DJ. Human microRNA (miR29b) expression controls the amount of branched chain alpha-ketoacid dehydrogenase complex in a cell. Hum Mol Genet. 2005;14(22):3371.PubMedCrossRefGoogle Scholar
  33. 33.
    Cole JT, Mitala CM, Kundu S, Verma A, Elkind JA, Nissim I, Cohen AS. Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. Proc Natl Acad Sci U S A. 2010;107(1):366.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of NeurologyUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations