Skip to main content

Impact of Dietary Essential Amino Acids in Man

Part of the Nutrition and Health book series (NH)

Abstract

Dietary essential amino acids have two distinct nutritional functions: (1) substrates act as protein building blocks, and (2) they act as nutritional signals to evoke physiological reactions. The amino acid requirements of adults are stated in the 1985 FAO/WHO/UNU report. The amino acid values were primarily based on N balance studies. However, a number of tracer techniques and approaches have emerged to estimate the requirements, and the general conclusion from these studies is that the adult requirements for individual essential amino acids are considerably greater than the standards derived from earlier N balance studies. The final conclusion regarding each requirement is still under discussion. Dietary essential amino acids, including BCAAs, have important physiological signaling effects. Enhancing the essential amino acid composition improved glucose tolerance, decreased lipogenesis, and prevented hepatic steatosis in mice with diet induced obesity. There is clinical evidence suggesting that the supplementation of essential amino acids or BCAAs has beneficial effects on body weight, body fat, lean body mass, and insulin sensitivity. Furthermore, the BCAA, especially leucine-enriched balanced amino acid supplements are nutritionally recommended for the management of sarcopenia in elderly subjects. To reap the health benefits of essential amino acids (both as building blocks of proteins and as physiological signals), choosing food ingredients based on their amino acid composition is a potential new approach that could be combined with amino acid supplementation.

Keywords

  • Essential amino acids
  • Branched chain amino acids
  • Requirements
  • Antiobesogenic effect
  • Anabolic effect
  • Food ingredients

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-1923-9_1
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-1923-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3

References

  1. FAO/WHO/UNU. Energy and protein requirements. Geneva 1985.

    Google Scholar 

  2. FAO/WHO. Energy and protein requirements. Geneva 1973.

    Google Scholar 

  3. Rose WC. The amino acid requirements of adult man. Nutr Abstr Rev Ser Hum Exp. 1957;27(3):631–47.

    CAS  PubMed  Google Scholar 

  4. Young VR, Tharakan JF. Metabolic and therapeutic aspects of amino acids in clinical nutrition. Boca Raton, FL: CRC Press; 2004.

    Google Scholar 

  5. Young VR, Scrimshaw NS. The nutritional significance of plasma and urinary amino acids. New York: Pergamon Press; 1972.

    Google Scholar 

  6. Harper AE, Benevenga NJ, Wohlhueter RM. Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev. 1970;50(3):428–558.

    CAS  PubMed  Google Scholar 

  7. Pion R. The relationship between the levels of free amino acids in blood and muscle and the nutritive value of proteins. New York: Academic; 1973.

    Google Scholar 

  8. Young VR, Tontisirin K, Ozalp I, Lakshmanan F, Scrimshaw NS. Plasma amino acid response curve and amino acid requirements in young men: valine and lysine. J Nutr. 1972;102(9):1159–69.

    CAS  PubMed  Google Scholar 

  9. Tontisirin K, Young VR, RAND WM, Scrimshaw NS. Plasma threonine response curve and threonine requirements of young men and elderly women. J Nutr. 1974;104:495–505.

    CAS  Google Scholar 

  10. Layman DK. The role of leucine in weight loss diets and glucose homeostasis. J Nutr. 2003;133(1):261S–7.

    PubMed  Google Scholar 

  11. MEXT: Ministry of Education C, Sports, Science and Technology. STANDARD TABLES OF FOOD COMPOSITION IN JAPAN AMINO ACID COMPOSITION OF FOODS 2010.

    Google Scholar 

  12. Ichihara A, Koyama E. Transaminase of branched chain amino acids. I Branched chain amino acids-alpha-ketoglutarate transaminase. J Biochem. 1966;59(2):160–9.

    CAS  PubMed  Google Scholar 

  13. Wahren J, Felig P, Hagenfeldt L. Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J Clin Invest. 1976;57(4):987–99.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  14. Cynober L, Harris RA. Symposium on branched-chain amino acids: conference summary. J Nutr. 2006;136(1 Suppl):333S–6.

    CAS  PubMed  Google Scholar 

  15. Zhang Y, Guo K, LeBlanc RE, Loh D, Schwartz GJ, Yu YH. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes. 2007;56(6):1647–54.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Lynch CJ, Gern B, Lloyd C, Hutson SM, Eicher R, Vary TC. Leucine in food mediates some of the postprandial rise in plasma leptin concentrations. Am J Physiol Endocrinol Metab. 2006;291(3):E621–30.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Macotela Y, Emanuelli B, Bang AM, et al. Dietary leucine–an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS One. 2011;6(6):e21187.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  18. Doi M, Yamaoka I, Nakayama M, Sugahara K, Yoshizawa F. Hypoglycemic effect of isoleucine involves increased muscle glucose uptake and whole body glucose oxidation and decreased hepatic gluconeogenesis. Am J Physiol Endocrinol Metab. 2007;292(6):E1683–93.

    Google Scholar 

  19. Noguchi Y, Nishikata N, Shikata N, et al. Ketogenic essential amino acids modulate lipid synthetic pathways and prevent hepatic steatosis in mice. PLoS One. 2010;5(8):e12057.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  20. Theytaz F, Noguchi Y, Egli L, et al. Effects of supplementation with essential amino acids on intrahepatic lipid concentrations during fructose overfeeding in humans. Am J Clin Nutr. 2012;96(5):1008–16.

    CAS  PubMed  CrossRef  Google Scholar 

  21. Bernard JR, Liao YH, Hara D, et al. An amino acid mixture improves glucose tolerance and insulin signaling in Sprague-Dawley rats. Am J Physiol Endocrinol Metab. 2011;300(4):E752–60.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Murakami H, Shimbo K, Inoue Y, Takino Y, Kobayashi H. Importance of amino acid composition to improve skin collagen protein synthesis rates in UV-irradiated mice. Amino Acids. 2012;42(6):2481–9.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  23. Solerte SB, Fioravanti M, Locatelli E, et al. Improvement of blood glucose control and insulin sensitivity during a long-term (60 weeks) randomized study with amino acid dietary supplements in elderly subjects with type 2 diabetes mellitus. Am J Cardiol. 2008;101(11A):82E–8.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Qin LQ, Xun P, Bujnowski D, et al. Higher branched-chain amino acid intake is associated with a lower prevalence of being overweight or obese in middle-aged East Asian and Western adults. J Nutr. 2011;141(2):249–54.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  25. Rennie MJ, Edwards RH, Halliday D, Matthews DE, Wolman SL, Millward DJ. Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting. Clin Sci (Lond). 1982;63(6):519–23.

    CAS  Google Scholar 

  26. Bennet WM, Connacher AA, Scrimgeour CM, Rennie MJ. The effect of amino acid infusion on leg protein turnover assessed by L-[15 N]phenylalanine and L-[1-13C]leucine exchange. Eur J Clin Invest. 1990;20(1):41–50.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Bohe J, Low A, Wolfe RR, Rennie MJ. Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J Physiol. 2003;552(Pt 1):315–24.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  28. Dillon EL, Sheffield-Moore M, Paddon-Jones D, et al. Amino acid supplementation increases lean body mass, basal muscle protein synthesis, and insulin-like growth factor-I expression in older women. J Clin Endocrinol Metab. 2009;94(5):1630–7.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  29. Solerte SB, Gazzaruso C, Bonacasa R, et al. Nutritional supplements with oral amino acid mixtures increases whole-body lean mass and insulin sensitivity in elderly subjects with sarcopenia. Am J Cardiol. 2008;101(11A):69E–77.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Morley JE, Argiles JM, Evans WJ, et al. Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc. 2010;11(6):391–6.

    PubMed  CrossRef  Google Scholar 

  31. Kim HK, Suzuki T, Saito K, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc. 2012;60(1):16–23.

    PubMed  CrossRef  Google Scholar 

  32. Aquilani R, Zuccarelli GC, Dioguardi FS, et al. Effects of oral amino acid supplementation on long-term-care-acquired infections in elderly patients. Arch Gerontol Geriatr. 2011;52(3):e123–8.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Dal Negro RW, Aquilani R, Bertacco S, Boschi F, Micheletto C, Tognella S. Comprehensive effects of supplemented essential amino acids in patients with severe COPD and sarcopenia. Monaldi Arch Chest Dis. 2010;73(1):25–33.

    CAS  PubMed  Google Scholar 

  34. Aquilani R, Boselli M, Boschi F, et al. Branched-chain amino acids may improve recovery from a vegetative or minimally conscious state in patients with traumatic brain injury: a pilot study. Arch Phys Med Rehabil. 2008;89(9):1642–7.

    PubMed  CrossRef  Google Scholar 

  35. Smriga M, Ghosh S, Mouneimne Y, Pellett PL, Scrimshaw NS. Lysine fortification reduces anxiety and lessens stress in family members in economically weak communities in Northwest Syria. Proc Natl Acad Sci U S A. 2004;101(22):8285–8.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  36. Smriga M, Torii K. L-Lysine acts like a partial serotonin receptor 4 antagonist and inhibits serotonin-mediated intestinal pathologies and anxiety in rats. Proc Natl Acad Sci U S A. 2003;100(26):15370–5.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Nagao Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nagao, K., Jinzu, H., Noguchi, Y., Bannai, M. (2015). Impact of Dietary Essential Amino Acids in Man. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1923-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1923-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1922-2

  • Online ISBN: 978-1-4939-1923-9

  • eBook Packages: MedicineMedicine (R0)