Skip to main content

Enteral Leucine and Protein Synthesis in Skeletal and Cardiac Muscle

  • Chapter
  • First Online:
Branched Chain Amino Acids in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

  • 1487 Accesses

Abstract

After more than a decade of research, it is now well recognized that leucine is a unique amino acid that not only serves as a substrate for protein synthesis but also acts as an anabolic agent to regulate protein synthesis. Leucine stimulates protein synthesis in a number of tissues but its effectiveness in promoting protein synthesis is greatest in skeletal muscle and less pronounced in cardiac muscle. The molecular mechanism by which leucine regulates protein synthesis has been generated primarily from in vitro studies under strictly controlled conditions in different cell types, but more recent in vivo studies are revealing signaling components involved in the leucine-induced stimulation of protein synthesis under physiological conditions. Although solid evidence has demonstrated that leucine stimulates protein synthesis by activating mechanistic target of rapamycin complex 1 (mTORC1), the precise mechanism by which leucine regulates mTORC1 is still not clear. Moreover, whether leucine’s effectiveness in stimulating protein synthesis can be sustained in the long-term to promote lean growth has not been determined and merits investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rasmussen BB, Phillips SM. Contractile and nutritional regulation of human muscle growth. Exerc Sport Sci Rev. 2003;31:127–31.

    Article  PubMed  Google Scholar 

  2. Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation. 2004;109(13):1580–9.

    Article  PubMed  Google Scholar 

  3. Preedy VR, Smith DM, Kearney NF, Sugden PH. Rates of protein turnover in vivo and in vitro in ventricular muscle of hearts from fed and starved rats. Biochem J. 1984;222:395–400.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Davis TA, Suryawan A, Orellana RA, Fiorotto ML, Burrin DG. Amino acids and insulin are regulators of muscle protein synthesis in neonatal pigs. Animal. 2010;4:1790–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brosnan JT, Brosnan ME. Branched-chain amino acids: enzyme and substrate regulation. J Nutr. 2006;136:207S–11.

    CAS  PubMed  Google Scholar 

  6. May ME, Buse MG. Effects of branched-chain amino acids on protein turnover. Diabetes Metab Rev. 1989;5(3):227–45.

    Article  CAS  PubMed  Google Scholar 

  7. Harper AE, Miller RH, Block KP. Branched-chain amino acid metabolism. Annu Rev Nutr. 1984;4:409–54.

    Article  CAS  PubMed  Google Scholar 

  8. Matthews DE. Observations of branched-chain amino acid administration in humans. J Nutr. 2005;135:1580S–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM. A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr. 1998;68:72–81.

    CAS  PubMed  Google Scholar 

  10. Hutson SM, Sweatt AJ, Lanoue KF. Branched-chain amino acid metabolism: implications for establishing safe intakes. J Nutr. 2005;135:1557S–64.

    CAS  PubMed  Google Scholar 

  11. Buse MG, Reid SS. Leucine. A possible regulator of protein turnover in muscle. J Clin Invest. 1975;56:1250–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Escobar J, Frank JW, Suryawan A, Nguyen HV, Kimball SR, Jefferson LS, Davis TA. Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs. Am J Physiol Endocrinol Metab. 2006;290:E612–21.

    Article  CAS  PubMed  Google Scholar 

  13. Proud CG. Regulation of protein synthesis by insulin. Biochem Soc Trans. 2006;34:213–6.

    Article  CAS  PubMed  Google Scholar 

  14. O’Connor PM, Bush JA, Suryawan A, Nguyen HV, Davis TA. Insulin and amino acids independently stimulate skeletal muscle protein synthesis in neonatal pigs. Am J Physiol Endocrinol Metab. 2003;284:E110–9.

    PubMed  Google Scholar 

  15. Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006;6:729–34.

    Article  CAS  PubMed  Google Scholar 

  16. Bar-Peled L, Sabatini DM. SnapShot: mTORC1 signaling at the lysosomal surface. Cell. 2012;151(6):1390–1390.e1.

    Article  CAS  PubMed  Google Scholar 

  17. Klasson H, Fink GR, Ljungdahl PO. Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol Cell Biol. 1999;19:5405–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Lynch CJ, Hutson SM, Patson BJ, Vaval A, Vary TC. Tissue-specific effects of chronic dietary leucine and norleucine supplementation on protein synthesis in rats. Am J Physiol Endocrinol Metab. 2002;283:E824–35.

    CAS  PubMed  Google Scholar 

  19. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136:521–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol. 2005;15:254–66.

    Article  CAS  PubMed  Google Scholar 

  21. Gaccioli F, Huang CC, Wang C, Bevilacqua E, Franchi-Gazzola R, Gazzola GC, Bussolati O, Snider MD, Hatzoglou M. Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation. J Biol Chem. 2006;281:17929–40.

    Article  PubMed  Google Scholar 

  22. Evans K, Nasim Z, Brown J, Butler H, Kauser S, Varoqui H, Erickson JD, Herbert TP, Bevington A. Acidosis-sensing glutamine pump SNAT2 determines amino acid levels and mammalian target of rapamycin signalling to protein synthesis in L6 muscle cells. J Am Soc Nephrol. 2007;18:1426–36.

    Article  CAS  PubMed  Google Scholar 

  23. Suryawan A, Nguyen HV, Almonaci RD, Davis TA. Abundance of amino acid transporters involved in mTORC1 activation in skeletal muscle of neonatal pigs is developmentally regulated. Amino Acids. 2013;45(3):523–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Findlay GM, Yan L, Procter J, Mieulet V, Lamb RF. A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem J. 2007;403:13–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Backer JM. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J. 2008;410:1–17.

    Article  CAS  PubMed  Google Scholar 

  26. Sancak Y, Sabatini DM. Rag proteins regulate amino-acid-induced mTORC1 signalling. Biochem Soc Trans. 2009;37:289–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kimball SR, Jefferson LS. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr. 2006;136:227S–31.

    CAS  PubMed  Google Scholar 

  28. Davis TA, Nguyen HV, Suryawan A, Bush JA, Jefferson LS, Kimball SR. Developmental changes in the feeding-induced stimulation of translation initiation in muscles of neonatal pigs. Am J Physiol Endocrinol Metab. 2000;279(6):E1226–34.

    CAS  PubMed  Google Scholar 

  29. Anthony JC, Anthony TG, Kimball SR, Vary TC, Jefferson LS. Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation. J Nutr. 2000;130:139–45.

    CAS  PubMed  Google Scholar 

  30. Wilson FA, Suryawan A, Gazzaneo MC, Orellana RA, Nguyen HV, Davis TA. Stimulation of muscle protein synthesis by prolonged parenteral infusion of leucine is dependent on amino acid availability in neonatal pigs. J Nutr. 2010;140:264–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Loreni F, Thomas G, Amaldi F. Transcription inhibitors stimulate translation of 5′ TOP mRNAs through activation of S6 kinase and the mTOR/FRAP signalling pathway. Eur J Biochem. 2000;267(22):6594–601.

    Article  CAS  PubMed  Google Scholar 

  32. Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci. 2006;31:342–8.

    Article  CAS  PubMed  Google Scholar 

  33. Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J, Mueller M, Fumagalli S, Kozma SC, Thomas G. S6K1(−/−)/S6K2(−/−) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol. 2004;24:3112–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Browne GJ, Proud CG. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem. 2002;269(22):5360–8.

    Article  CAS  PubMed  Google Scholar 

  35. Suryawan A, Jeyapalan AS, Orellana RA, Wilson FA, Nguyen HV, Davis TA. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation. Am J Physiol Endocrinol Metab. 2008;295(4):E868–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Escobar J, Frank JW, Suryawan A, Nguyen HV, Kimball SR, Jefferson LS, Davis TA. Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation. Am J Physiol Endocrinol Metab. 2005;288(5):E914–21.

    Article  CAS  PubMed  Google Scholar 

  37. Murgas Torrazza R, Suryawan A, Gazzaneo MC, Orellana RA, Frank JW, Nguyen HV, Fiorotto ML, El-Kadi S, Davis TA. Leucine supplementation of a low-protein meal increases skeletal muscle and visceral tissue protein synthesis in neonatal pigs by stimulating mTOR-dependent translation initiation. J Nutr. 2010;140(12):2145–52.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Suryawan A, Torrazza RM, Gazzaneo MC, Orellana RA, Fiorotto ML, El-Kadi SW, Srivastava N, Nguyen HV, Davis TA. Enteral leucine supplementation increases protein synthesis in skeletal and cardiac muscles and visceral tissues of neonatal pigs through mTORC1-dependent pathways. Pediatr Res. 2012;71:324–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Shimomura Y, Harris RA. Metabolism and physiological function of branched-chain amino acids: discussion of session 1. J Nutr. 2006;136:232S–3.

    CAS  PubMed  Google Scholar 

  40. Wilkinson DJ, Hossain T, Hill DS, Phillips BE, Crossland H, Williams J, Loughna P, Churchward-Venne TA, Breen L, Phillips SM, Etheridge T, Rathmacher JA, Smith K, Szewczyk NJ, Atherton PJ. Effects of leucine and its metabolite, β-hydroxy-β-methylbutyrate (HMB) on human skeletal muscle protein metabolism. J Physiol. 2013;591(Pt 11):2911–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Shimomura Y, Murakami T, Nakai N, Nagasaki M, Harris RA. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J Nutr. 2004;134:1583S–7.

    CAS  PubMed  Google Scholar 

  42. Mero A. Leucine supplementation and intensive training. Sports Med. 1999;27:347–58.

    Article  CAS  PubMed  Google Scholar 

  43. Baracos VE, Mackenzie ML. Investigations of branched-chain amino acids and their metabolites in animal models of cancer. J Nutr. 2006;136:237S–42.

    CAS  PubMed  Google Scholar 

  44. Fujita S, Volpi E. Amino acids and muscle loss with aging. J Nutr. 2006;136:277S–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Davis TA, Burrin DG, Fiorotto ML, Nguyen HV. Protein synthesis in skeletal muscle and jejunum is more responsive to feeding in 7-than in 26-day-old pigs. Am J Physiol. 1996;270:E802–9.

    CAS  PubMed  Google Scholar 

  46. Dardevet D, Sornet C, Bayle G, Prugnaud J, Pouyet C, Grizard J. Postprandial stimulation of muscle protein synthesis in old rats can be restored by a leucine-supplemented meal. J Nutr. 2002;132:95–100.

    CAS  PubMed  Google Scholar 

  47. Zeanandin G, Balage M, Schneider SM, Dupont J, Hébuterne X, Mothe-Satney I, Dardevet D. Differential effect of long-term leucine supplementation on skeletal muscle and adipose tissue in old rats: an insulin signaling pathway approach. Age. 2012;34:371–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lang CH, Pruznak AM, Frost RA. TNFalpha mediates sepsis-induced impairment of basal and leucine-stimulated signaling via S6K1 and eIF4E in cardiac muscle. J Cell Biochem. 2005;94:419–31.

    Article  CAS  PubMed  Google Scholar 

  49. Vary T. Oral leucine enhances myocardial protein synthesis in rats acutely administered ethanol. J Nutr. 2009;139:1439–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Guillet C, Zangarelli A, Mishellany A, Rousset P, Sornet C, Dardevet D, Boirie Y. Mitochondrial and sarcoplasmic proteins, but not myosin heavy chain, are sensitive to leucine supplementation in old rat skeletal muscle. Exp Gerontol. 2004;39:745–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosure

Dr. Davis is a recipient of research support from the National Institutes of Health (NIH, R01 AR44474 and HD072891), US Department of Agriculture National Institute of Food and Agriculture (USDA NIFA 2013-67015-20438), USDA/Agricultural Research Service (ARS, 6250-51000-055), and Abbott Nutrition. This work is a publication of the USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas. The contents of this publication do not necessarily reflect the views or policies of the USDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa A. Davis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Suryawan, A., Davis, T.A. (2015). Enteral Leucine and Protein Synthesis in Skeletal and Cardiac Muscle. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1923-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1923-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1922-2

  • Online ISBN: 978-1-4939-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics