Skip to main content

Branched Chain Amino Acids in Inherited Muscle Disease: The Case of Duchenne Muscular Dystrophy

  • Chapter
  • First Online:
Branched Chain Amino Acids in Clinical Nutrition

Abstract

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder affecting boys. The disease is characterized by progressive loss of muscle mass and gain of body fat [1]. Steroids (e.g., prednisone) to ameliorate the symptoms of the disease are the only treatment available at this time, but they exacerbate accumulation of body fat, among other unwanted side effects. Given the dramatic changes in body composition, nutritional strategies are attractive alternatives to improve quality of life in DMD patients, but surprisingly, there have been few systematic studies conducted. Branched chain amino acids, especially leucine, induce protein synthesis, inhibit protein degradation, and induce few to no side effects. Consequently, supplementation of DMD patients with BCAAs is a potential and logical approach to reduce the rate of disease progression. Increased muscle mass could increase strength and mobility of these patients. The current chapter describes the potential benefits of BCAA supplementation for DMD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidson ZE, Truby H. A review of nutrition in Duchenne muscular dystrophy. J Hum Nutr Diet. 2009;22(5):383–93.

    Article  CAS  PubMed  Google Scholar 

  2. Durbeej M, Campbell KP. Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr Opin Genet Dev. 2002;12(3):349–61.

    Article  CAS  PubMed  Google Scholar 

  3. Pichavant C, Aartsma-Rus A, Clemens PR, et al. Current status of pharmaceutical and genetic therapeutic approaches to treat DMD. Mol Ther. 2011;19(5):830–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Blake DJ, Weir A, Newey SE, Davies KE. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev. 2002;82(2):291–329.

    CAS  PubMed  Google Scholar 

  5. Pilgram GS, Potikanond S, Baines RA, Fradkin LG, Noordermeer JN. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol Neurobiol. 2010;41(1):1–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Mendell JR, Moxley RT, Griggs RC, et al. Randomized, double-blind six-month trial of prednisone in Duchenne's muscular dystrophy. N Engl J Med. 1989;320(24):1592–7.

    Article  CAS  PubMed  Google Scholar 

  7. Biggar WD, Gingras M, Fehlings DL, Harris VA, Steele CA. Deflazacort treatment of Duchenne muscular dystrophy. J Pediatr. 2001;138(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  8. Ballard FJ, Tomas FM, Stern LM. Increased turnover of muscle contractile proteins in Duchenne muscular dystrophy as assessed by 3-methylhistidine and creatinine excretion. Clin Sci (Lond). 1979;56(4):347–52.

    CAS  Google Scholar 

  9. MacLennan PA, Edwards RH. Protein turnover is elevated in muscle of mdx mice in vivo. Biochem J. 1990;268(3):795–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Petrof BJ. The molecular basis of activity-induced muscle injury in Duchenne muscular dystrophy. Mol Cell Biochem. 1998;179(1–2):111–23.

    Article  CAS  PubMed  Google Scholar 

  11. Kornegay JN, Childers MK, Bogan DJ, et al. The paradox of muscle hypertrophy in muscular dystrophy. Phys Med Rehabil Clin N Am. 2012;23(1):149–72. xii.

    Article  PubMed  Google Scholar 

  12. Blomstrand E, Eliasson J, Karlsson HK, Kohnke R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006;136(1 Suppl):269S–73.

    CAS  PubMed  Google Scholar 

  13. Crozier SJ, Kimball SR, Emmert SW, Anthony JC, Jefferson LS. Oral leucine administration stimulates protein synthesis in rat skeletal muscle. J Nutr. 2005;135(3):376–82.

    CAS  PubMed  Google Scholar 

  14. Morley JE, Argiles JM, Evans WJ, et al. Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc. 2010;11(6):391–6.

    Article  PubMed  Google Scholar 

  15. Anthony JC, Anthony TG, Kimball SR, Jefferson LS. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr. 2001;131(3):856S–60.

    CAS  PubMed  Google Scholar 

  16. Anthony JC, Anthony TG, Kimball SR, Vary TC, Jefferson LS. Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increase eIF4F formation. J Nutr. 2000;130:139–45.

    CAS  PubMed  Google Scholar 

  17. Sancak Y, Peterson TR, Shaul YD, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496–501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Settembre C, Zoncu R, Medina DL, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31(5):1095–108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology. 2003;144(12):5179–83.

    Article  CAS  PubMed  Google Scholar 

  22. Alers S, Loffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32(1):2–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr. 2000;130(10):2413–9.

    CAS  PubMed  Google Scholar 

  24. Busquets S, Alvarez B, Lopez-Soriano FJ, Argiles JM. Branched-chain amino acids: a role in skeletal muscle proteolysis in catabolic states? J Cell Physiol. 2002;191(3):283–9.

    Article  CAS  PubMed  Google Scholar 

  25. Nakashima K, Ishida A, Yamazaki M, Abe H. Leucine suppresses myofibrillar proteolysis by down-regulating ubiquitin-proteasome pathway in chick skeletal muscles. Biochem Biophys Res Commun. 2005;336(2):660–6.

    Article  CAS  PubMed  Google Scholar 

  26. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280(17):4294–314.

    Article  CAS  PubMed  Google Scholar 

  27. Bolster DR, Jefferson LS, Kimball SR. Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling. Proc Nutr Soc. 2004;63(2):351–6.

    Article  CAS  PubMed  Google Scholar 

  28. Baptista IL, Leal ML, Artioli GG, et al. Leucine attenuates skeletal muscle wasting via inhibition of ubiquitin ligases. Muscle Nerve. 2010;41(6):800–8.

    Article  CAS  PubMed  Google Scholar 

  29. Busquets S, Alvarez B, Llovera M, Agell N, Lopez-Soriano FJ, Argiles JM. Branched-chain amino acids inhibit proteolysis in rat skeletal muscle: mechanisms involved. J Cell Physiol. 2000;184(3):380–4.

    Article  CAS  PubMed  Google Scholar 

  30. Jitomir J, Willoughby DS. Leucine for retention of lean mass on a hypocaloric diet. J Med Food. 2008;11(4):606–9.

    Article  CAS  PubMed  Google Scholar 

  31. Anthony JC, Anthony TG, Layman DK. Leucine supplementation enhances skeletal muscle recovery in rats following exercise. J Nutr. 1999;129(6):1102–6.

    CAS  PubMed  Google Scholar 

  32. Andersen LL, Tufekovic G, Zebis MK, et al. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. Metabolism. 2005;54(2):151–6.

    Article  CAS  PubMed  Google Scholar 

  33. Coburn JW, Housh DJ, Housh TJ, et al. Effects of leucine and whey protein supplementation during eight weeks of unilateral resistance training. J Strength Cond Res. 2006;20(2):284–91.

    PubMed  Google Scholar 

  34. Dreyer HC, Drummond MJ, Pennings B, et al. Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol. 2008;294(2):E392–400.

    CAS  Google Scholar 

  35. De Bandt JP, Cynober L. Therapeutic use of branched-chain amino acids in burn, trauma, and sepsis. J Nutr. 2006;136(1 Suppl):308S–13.

    PubMed  Google Scholar 

  36. Gomes-Marcondes MC, Ventrucci G, Toledo MT, Cury L, Cooper JC. A leucine-supplemented diet improved protein content of skeletal muscle in young tumor-bearing rats. Braz J Med Biol Res. 2003;36(11):1589–94.

    Article  CAS  PubMed  Google Scholar 

  37. Siddiqui R, Pandya D, Harvey K, Zaloga GP. Nutrition modulation of cachexia/proteolysis. Nutr Clin Pract. 2006;21(2):155–67.

    Article  PubMed  Google Scholar 

  38. Vary TC. Acute oral leucine administration stimulates protein synthesis during chronic sepsis through enhanced association of eukaryotic initiation factor 4G with eukaryotic initiation factor 4E in rats. J Nutr. 2007;137(9):2074–9.

    CAS  PubMed  Google Scholar 

  39. Ventrucci G, Mello MA, Gomes-Marcondes MC. Leucine-rich diet alters the eukaryotic translation initiation factors expression in skeletal muscle of tumour-bearing rats. BMC Cancer. 2007;7:42.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Ionasescu V, Zellweger H, Ionasescu R, Lara-Braud C, Cancilla PA. Protein synthesis in muscle cultures from patients with Duchenne muscular dystrophy. Calcium and A23187 ionophore dependent changes. Acta Neurol Scand. 1976;54(3):241–7.

    Article  CAS  PubMed  Google Scholar 

  41. Ionasescu V, Stern LZ, Ionasescu R, Rubenstein P. Stimulatory effects of drugs for protein synthesis on muscle cell cultures in Duchenne dystrophy. Ann Neurol. 1979;5(2):107–10.

    Article  CAS  PubMed  Google Scholar 

  42. Boule M, Vanasse M, Brakier-Gingras L. Decrease in the rate of protein synthesis by polysomes from cultured fibroblasts of patients and carriers with Duchenne muscular dystrophy. Can J Neurol Sci. 1979;6(3):355–8.

    CAS  PubMed  Google Scholar 

  43. Haymond MW, Strobel KE, DeVivo DC. Muscle wasting and carbohydrate homeostasis in Duchenne muscular dystrophy. Neurology. 1978;28(12):1224–31.

    Article  CAS  PubMed  Google Scholar 

  44. Mussini E, Cornelio F, Colombo L, et al. Increased myofibrillar protein catabolism in duchenne muscular dystrophy measured by 3-methylhistidine excretion in the urine. Muscle Nerve. 1984;7(5):388–91.

    Article  CAS  PubMed  Google Scholar 

  45. Rodemann HP, Bayreuther K. Differential degradation of [35S]methionine polypeptides in Duchenne muscular dystrophy skin fibroblasts in vitro. Proc Natl Acad Sci U S A. 1986;83(7):2086–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Hankard R, Mauras N, Hammond D, Haymond M, Darmaun D. Is glutamine a “conditionally essential” amino acid in Duchenne muscular dystrophy? Clin Nutr. 1999;18(6):365–9.

    Article  CAS  PubMed  Google Scholar 

  47. Hankard RG, Hammond D, Haymond MW, Darmaun D. Oral glutamine slows down whole body protein breakdown in Duchenne muscular dystrophy. Pediatr Res. 1998;43(2):222–6.

    Article  CAS  PubMed  Google Scholar 

  48. Mok E, Letellier G, Cuisset JM, et al. Lack of functional benefit with glutamine versus placebo in Duchenne muscular dystrophy: a randomized crossover trial. PLoS One. 2009;4(5):e5448.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Krebs HA. The role of chemical equilibria in organ function. Adv Enzyme Regul. 1975;13:449–72.

    Article  CAS  PubMed  Google Scholar 

  50. Hutson SM, Zapalowski C. Relationship of brranched-chain amino acids to skeletal muscle gluconeogenic amino acids. In: Walser M, Williamson JR, editors. Metabolism and clinical implications of branched-chain amino and ketoacids. New York: Elsevier/North Holland, Inc.; 1981. p. 245–50.

    Google Scholar 

  51. Gurpur PB, Liu J, Burkin DJ, Kaufman SJ. Valproic acid activates the PI3K/Akt/mTOR pathway in muscle and ameliorates pathology in a mouse model of Duchenne muscular dystrophy. Am J Pathol. 2009;174(3):999–1008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. von Maltzahn J, Renaud JM, Parise G, Rudnicki MA. Wnt7a treatment ameliorates muscular dystrophy. Proc Natl Acad Sci U S A. 2012;109(50):20614–9.

    Article  Google Scholar 

  53. Mouisel E, Vignaud A, Hourde C, Butler-Browne G, Ferry A. Muscle weakness and atrophy are associated with decreased regenerative capacity and changes in mTOR signaling in skeletal muscles of venerable (18–24-month-old) dystrophic mdx mice. Muscle Nerve. 2010;41(6):809–18.

    Article  CAS  PubMed  Google Scholar 

  54. Archer JD, Vargas CC, Anderson JE. Persistent and improved functional gain in mdx dystrophic mice after treatment with l-arginine and deflazacort. FASEB J. 2006;20(6):738–40.

    CAS  PubMed  Google Scholar 

  55. D’Antona G, Ragni M, Cardile A, et al. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab. 2010;12(4):362–72.

    Article  PubMed  Google Scholar 

  56. Terrill JR, Radley-Crabb HG, Iwasaki T, Lemckert FA, Arthur PG, Grounds MD. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies. FEBS J. 2013;280(17):4149–64.

    Article  CAS  PubMed  Google Scholar 

  57. Godin R, Daussin F, Matecki S, Li T, Petrof BJ, Burelle Y. Peroxisome proliferator-activated receptor gamma coactivator1- gene alpha transfer restores mitochondrial biomass and improves mitochondrial calcium handling in post-necrotic mdx mouse skeletal muscle. J Physiol. 2012;590(Pt 21):5487–502.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Allen DG, Whitehead NP. Duchenne muscular dystrophy – what causes the increased membrane permeability in skeletal muscle? Int J Biochem Cell Biol. 2011;43(3):290–4.

    Article  CAS  PubMed  Google Scholar 

  59. Whitehead NP, Pham C, Gervasio OL, Allen DG. N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J Physiol. 2008;586(7):2003–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Davoodi J, Markert CD, Voelker KA, Hutson SM, Grange RW. Nutrition strategies to improve physical capabilities in Duchenne muscular dystrophy. Phys Med Rehabil Clin N Am. 2012;23(1):187–99. xii-xiii.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004;15(3):1101–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332(6036):1429–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. De Palma C, Morisi F, Cheli S, et al. Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis. 2012;3:e418.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Pauly M, Daussin F, Burelle Y, et al. AMPK activation stimulates autophagy and ameliorates muscular dystrophy in the mdx mouse diaphragm. Am J Pathol. 2012;181(2):583–92.

    Article  CAS  PubMed  Google Scholar 

  65. Eghtesad S, Jhunjhunwala S, Little SR, Clemens PR. Rapamycin ameliorates dystrophic phenotype in mdx mouse skeletal muscle. Mol Med. 2011;17(9–10):917–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Colombo SL, Moncada S. AMPKalpha1 regulates the antioxidant status of vascular endothelial cells. Biochem J. 2009;421(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  67. Bushby K, Finkel R, Birnkrant DJ, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol. 2010;9(2):177–89.

    Article  CAS  PubMed  Google Scholar 

  68. Markert CD, Case LE, Carter GT, Furlong PA, Grange RW. Exercise and Duchenne muscular dystrophy: where we have been and where we need to go. Muscle Nerve. 2012;45(5):746–51.

    Article  PubMed  Google Scholar 

  69. Mendell JR, Griggs RC, Moxley 3rd RT, et al. Clinical investigation in Duchenne muscular dystrophy: IV Double-blind controlled trial of leucine. Muscle Nerve. 1984;7(7):535–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshid Davoodi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davoodi, J., Hutson, S.M., Grange, R.W. (2015). Branched Chain Amino Acids in Inherited Muscle Disease: The Case of Duchenne Muscular Dystrophy. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1914-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1914-7_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1913-0

  • Online ISBN: 978-1-4939-1914-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics