Skip to main content

Basic Aspects in Prevention of Posttransplant Bacteremia by Branched Chain Amino Acids

  • Chapter
  • First Online:
Branched Chain Amino Acids in Clinical Nutrition

Abstract

Despite recent advances in perioperative management and surgical techniques, postoperative mortality and morbidity associated with bacteremia after orthotropic and living donor liver transplantation (OLT and LDLT) are still prevalent. Bacteremia is the most serious complication, and the most frequent cause of in-hospital death after OLT and LDLT [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh N, Paterson DL, Gayowski T, Wagener MM, Marino IR. Predicting bacteremia and bacteremic mortality in liver transplant recipients. Liver Transpl. 2000;6:54–61.

    CAS  PubMed  Google Scholar 

  2. Iida T, Kaido T, Yagi S, et al. Posttransplant bacteremia in adult living donor liver transplant recipients. Liver Transpl. 2010;16:1379–85.

    Article  PubMed  Google Scholar 

  3. Alexopoulos S, Matsuoka L, Cho Y, et al. Outcomes after liver transplantation in patients achieving a model for end-stage liver disease score of 40 or higher. Transplantation. 2013;95:507–12.

    Article  PubMed  Google Scholar 

  4. Figueiredo F, Dickson ER, Pasha T, et al. Impact of nutritional status on outcomes after liver transplantation. Transplantation. 2000;70:1347–52.

    Article  CAS  PubMed  Google Scholar 

  5. Reilly J, Mehta R, Teperman L, et al. Nutritional support after liver transplantation: a randomized prospective study. J Parenter Enteral Nutr. 1990;14:386–91.

    Article  CAS  Google Scholar 

  6. Ikegami T, Shirabe K, Yoshiya S, et al. Bacterial sepsis after living donor liver transplantation: the impact of early enteral nutrition. J Am Coll Surg. 2012;214:288–95.

    Article  PubMed  Google Scholar 

  7. Kaido T, Mori A, Ogura Y, et al. Impact of enteral nutrition using a new immuno-modulating diet after liver transplantation. Hepatogastroenterology. 2010;57:1522–5.

    CAS  PubMed  Google Scholar 

  8. Rayes N, Seehofer D, Hansen S, et al. Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients. Transplantation. 2002;74:123–7.

    Article  PubMed  Google Scholar 

  9. Rayes N, Seehofer D, Theruvath T, et al. Supply of pre- and probiotics reduces bacterial infection rates after liver transplantation – a randomized, double-blind trial. Am J Transplant. 2005;5(1):125–30.

    Article  PubMed  Google Scholar 

  10. Eguchi S, Takatsuki M, Hidaka M, et al. Perioperative synbiotic treatment to prevent infectious complications in patients after elective living donor liver transplantation: a prospective randomized study. Am J Surg. 2011;201:498–502.

    Article  PubMed  Google Scholar 

  11. Tietge UJ, Bahr MJ, Manns MP, Böker KH. Hepatic amino-acid metabolism in liver cirrhosis and in the long-term course after liver transplantation. Transpl Int. 2003;16:1–8.

    Article  CAS  PubMed  Google Scholar 

  12. Mager DR, Wykes LJ, Roberts EA, Ball RO, Pencharz PB. Effect of orthotopic liver transplantation (OLT) on branched-chain amino acid requirement. Pediatr Res. 2006;59:829–34.

    Article  PubMed  Google Scholar 

  13. Luzi L, Regalia E, Pulvirenti A, et al. Post-absorptive and insulin-mediated muscle protein metabolism in liver-transplanted patients. Acta Diabetol. 2002;39:203–8.

    Article  CAS  PubMed  Google Scholar 

  14. Munoz SJ, Jarrell BE, Westerberg S, Miller L, Moritz MJ, Maddrey WC. Serum amino acids following human orthotopic liver transplantation. Transplant Proc. 1993;25:1779–82.

    CAS  PubMed  Google Scholar 

  15. Roth E, Muhlbacher F, Karner J, Steininger R, Schemper M, Funovics J. Liver amino acids in sepsis. Surgery. 1985;97:436–42.

    CAS  PubMed  Google Scholar 

  16. Shirabe K, Yoshimatsu M, Motomura T, et al. Beneficial effects of supplementation with branched-chain amino acids on postoperative bacteremia in living donor liver transplant recipients. Liver Transpl. 2011;17:1073–80.

    PubMed  Google Scholar 

  17. Kaido T, Mori A, Ogura Y, et al. Pre- and perioperative factors affecting infection after living donor liver transplantation. Nutrition. 2012;28:1104–8.

    Article  PubMed  Google Scholar 

  18. Kaido T, Ogura Y, Ogawa K, et al. Effects of post-transplant enteral nutrition with an immunomodulating diet containing hydrolyzed whey peptide after liver transplantation. World J Surg. 2012;36:1666–71.

    Article  PubMed  Google Scholar 

  19. Yoshida R, Yagi T, Sadamori H, et al. Branched-chain amino acid-enriched nutrients improve nutritional and metabolic abnormalities in the early post-transplant period after living donor liver transplantation. J Hepatobiliary Pancreat Sci. 2012;19:438–48.

    Article  PubMed  Google Scholar 

  20. Mattick JS, Kamisoglu K, Ierapetritou MG, Androulakis IP, Berthiaume F. Branched-chain amino acid supplementation: impact on signaling and relevance to critical illness. Wiley Interdiscip Rev Syst Biol Med. 2013;5(4):449–60.

    Article  CAS  PubMed  Google Scholar 

  21. Ijichi C, Matsumura T, Tsuji T, Eto Y. Branched-chain amino acids promote albumin synthesis in rat primary hepatocytes through the mTOR signal transduction system. Biochem Biophys Res Commun. 2003;303:59–64.

    Article  CAS  PubMed  Google Scholar 

  22. Matsumura T, Morinaga Y, Fujitani S, Takehana K, Nishitani S, Sonaka I. Oral administration of branched-chain amino acids activates the mTOR signal in cirrhotic rat liver. Hepatol Res. 2005;33:27–32.

    Article  CAS  PubMed  Google Scholar 

  23. Nishitani S, Ijichi C, Takehana K, Fujitani S, Sonaka I. Pharmacological activities of branched-chain amino acids: specificity of tissue and signal transduction. Biochem Biophys Res Commun. 2004;313:387–9.

    Article  CAS  PubMed  Google Scholar 

  24. Cerra FB, Mazuski JE, Chute E, et al. Branched chain metabolic support. A prospective, randomized, double-blind trial in surgical stress. Ann Surg. 1984;199:286–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vente JP, Soeters PB, von Meyenfeldt MF, et al. Prospective randomized double-blind trial of branched chain amino acid enriched versus standard parenteral nutrition solutions in traumatized and septic patients. World J Surg. 1991;15:128–32.

    Article  CAS  PubMed  Google Scholar 

  26. Bassit RA, Sawada LA, Bacurau RF, et al. Branched-chain amino acid supplementation and the immune response of long-distance athletes. Nutrition. 2002;18:376–9.

    Article  CAS  PubMed  Google Scholar 

  27. Calder PC. Branched-chain amino acids and immunity. J Nutr. 2006;136:288S–93.

    CAS  PubMed  Google Scholar 

  28. Chuang JC, Yu CL, Wang SR. Modulation of human lymphocyte proliferation by amino acids. Clin Exp Immunol. 1990;81:173–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Nakamura I, Ochiai K, Imawari M. Phagocytic function of neutrophils of patients with decompensated liver cirrhosis is restored by oral supplementation of branched-chain amino acids. Hepatol Res. 2004;29:207–11.

    Article  CAS  PubMed  Google Scholar 

  30. Nakamura I, Ochiai K, Imai Y, Moriyasu F, Imawari M. Restoration of innate host defense responses by oral supplementation of branched-chain amino acids in decompensated cirrhotic patients. Hepatol Res. 2007;37:1062–7.

    Article  CAS  PubMed  Google Scholar 

  31. Kakazu E, Kanno N, Ueno Y, Shimosegawa T. Extracellular branched-chain amino acids, especially valine, regulate maturation and function of monocyte-derived dendritic cells. J Immunol. 2007;179:7137–46.

    Article  CAS  PubMed  Google Scholar 

  32. Kakazu E, Ueno Y, Kondo Y, et al. Branched chain amino acids enhance the maturation and function of myeloid dendritic cells ex vivo in patients with advanced cirrhosis. Hepatology. 2009;50:1936–45.

    Article  CAS  PubMed  Google Scholar 

  33. Doherty TJ. Invited review: aging and sarcopenia. J Appl Physiol. 2003;95:1717–27.

    CAS  PubMed  Google Scholar 

  34. Montano-Loza AJ, Meza-Junco J, Prado CM, et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012;10:166–73.

    Article  PubMed  Google Scholar 

  35. Piquet MA, Ollivier I, Gloro R, Castel H, Tiengou LE, Dao T. Nutritional indices in cirrhotic patients. Nutrition. 2006;22:216–7.

    Article  PubMed  Google Scholar 

  36. Tsuchiya M, Sakaida I, Okamoto M, Okita K. The effect of a late evening snack in patients with liver cirrhosis. Hepatol Res. 2005;31:95–103.

    Article  PubMed  Google Scholar 

  37. Englesbe MJ, Patel SP, He K, et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg. 2010;211:271–8.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Stuerenburg HJ, Stangneth B, Schoser BG. Age related profiles of free amino acids in human skeletal muscle. Neuro Endocrinol Lett. 2006;27:133–6.

    CAS  PubMed  Google Scholar 

  39. Kaido T, Ogawa K, Fujimoto Y. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am J Transplant. 2013. doi:10.1111/ajt.12221.

    Google Scholar 

  40. Adeva MM, Souto G, Blanco N, Donapetry C. Ammonium metabolism in humans. Metabolism. 2012;61:1495–511.

    Article  CAS  PubMed  Google Scholar 

  41. Jia H, Takahashi S, Saito K, Kato H. DNA microarray analysis identified molecular pathways mediating the effects of supplementation of branched-chain amino acids on CCl4-induced cirrhosis in rats. Mol Nutr Food Res. 2013;57:291–306.

    Article  CAS  PubMed  Google Scholar 

  42. Karinch AM, Pan M, Lin CM, Strange R, Souba WW. Glutamine metabolism in sepsis and infection. J Nutr. 2001;131 Suppl 9:2535S–8. discussion 2550S–1S.

    CAS  PubMed  Google Scholar 

  43. Biolo G, Zorat F, Antonione R, Ciocchi B. Muscle glutamine depletion in the intensive care unit. Int J Biochem Cell Biol. 2005;37:2169–79.

    Article  CAS  PubMed  Google Scholar 

  44. Masuda T, Shirabe K, Yoshiya S, et al. Nutrition support and infections associated with hepatic resection and liver transplantation in patients with chronic liver disease. J Parenter Enteral Nutr. 2013;37:318–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Shirabe M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shirabe, K., Ikegami, T., Yoshizumi, T., Maehara, Y. (2015). Basic Aspects in Prevention of Posttransplant Bacteremia by Branched Chain Amino Acids. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1914-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1914-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1913-0

  • Online ISBN: 978-1-4939-1914-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics