Skip to main content

Stem Cell-Based Therapies for Spinal Cord Regeneration

  • Chapter
  • First Online:
Neural Stem Cells in Development, Adulthood and Disease

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1184 Accesses

Abstract

Complete spinal cord injury, characterized by complete loss of motor, sensory, and autonomous function below the level of injury, requires robust therapeutic approaches to replace damaged neural tissue, including astroglia, oligodendroglia, and neurons. Defined stem and progenitor cell populations, from virtually any developmental stage, can differentiate into glia and neurons, thereby having the capacity to replace degenerated spinal cord tissue in a phenotypically appropriate fashion. Numerous preclinical in vivo studies in various spinal cord injury models have demonstrated that stem cell transplantation strategies can indeed promote morphological, and in some cases functional, recovery, via different mechanisms, including remyelination, axonal growth, and regeneration or neuronal replacement. To date, two neural stem cell-based transplantation strategies have moved to phase I clinical trials. This review provides an overview on the current status of neural stem cell transplantation in spinal cord injury and discusses future perspectives in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abematsu, M., Tsujimura, K., Yamano, M., Saito, M., Kohno, K., Kohyama, J., et al. (2010). Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. Journal of Clinical Investigation, 120(9), 3255–3266. doi:10.1172/JCI42957.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akiyama, Y., Honmou, O., Kato, T., Uede, T., Hashi, K., & Kocsis, J. D. (2001). Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Experimental Neurology, 167(1), 27–39. doi:10.1006/exnr.2000.7539. S0014-4886(00)97539-3 [pii].

    CAS  PubMed  Google Scholar 

  • Akiyama, Y., Lankford, K., Radtke, C., Greer, C. A., & Kocsis, J. D. (2004). Remyelination of spinal cord axons by olfactory ensheathing cells and Schwann cells derived from a transgenic rat expressing alkaline phosphatase marker gene. Neuron Glia Biology, 1(1), 47–55.

    PubMed Central  PubMed  Google Scholar 

  • Archer, D. R., Cuddon, P. A., Lipsitz, D., & Duncan, I. D. (1997). Myelination of the canine central nervous system by glial cell transplantation: A model for repair of human myelin disease. Nature Medicine, 3(1), 54–59.

    CAS  PubMed  Google Scholar 

  • Arsenijevic, Y., Villemure, J. G., Brunet, J. F., Bloch, J. J., Deglon, N., Kostic, C., et al. (2001). Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Experimental Neurology, 170(1), 48–62. doi:10.1006/exnr.2001.7691.

    CAS  PubMed  Google Scholar 

  • Barnabe-Heider, F., & Frisen, J. (2008). Stem cells for spinal cord repair. Cell Stem Cell, 3(1), 16–24. doi:10.1016/j.stem.2008.06.011. S1934-5909(08)00290-7 [pii].

    CAS  PubMed  Google Scholar 

  • Basso, D. M., Beattie, M. S., & Bresnahan, J. C. (1996). Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Experimental Neurology, 139(2), 244–256. doi:10.1006/exnr.1996.0098.

    CAS  PubMed  Google Scholar 

  • Ben-David, U., & Benvenisty, N. (2011). The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews. Cancer, 11(4), 268–277. doi:10.1038/nrc3034.

    CAS  PubMed  Google Scholar 

  • Bernstein-Goral, H., & Bregman, B. S. (1993). Spinal cord transplants support the regeneration of axotomized neurons after spinal cord lesions at birth: A quantitative double-labeling study. Experimental Neurology, 123(1), 118–132. doi:10.1006/exnr.1993.1145.

    CAS  PubMed  Google Scholar 

  • Bernstein-Goral, H., & Bregman, B. S. (1997). Axotomized rubrospinal neurons rescued by fetal spinal cord transplants maintain axon collaterals to rostral CNS targets. Experimental Neurology, 148(1), 13–25. doi:10.1006/exnr.1997.6640.

    CAS  PubMed  Google Scholar 

  • Blakemore, W. F., & Crang, A. J. (1985). The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system. Journal of Neurological Sciences, 70(2), 207–223.

    CAS  Google Scholar 

  • Bonner, J. F., Blesch, A., Neuhuber, B., & Fischer, I. (2010). Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. Journal of Neuroscience Research, 88(6), 1182–1192. doi:10.1002/jnr.22288.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonner, J. F., Connors, T. M., Silverman, W. F., Kowalski, D. P., Lemay, M. A., & Fischer, I. (2011). Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. Journal of Neuroscience, 31(12), 4675–4686. doi:10.1523/JNEUROSCI.4130-10.2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bregman, B. S. (1987). Spinal cord transplants permit the growth of serotonergic axons across the site of neonatal spinal cord transection. Brain Research, 431(2), 265–279.

    CAS  PubMed  Google Scholar 

  • Bregman, B. S., Diener, P. S., McAtee, M., Dai, H. N., & James, C. (1997). Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury. Advances in Neurology, 72, 257–275.

    CAS  PubMed  Google Scholar 

  • Bregman, B. S., & Reier, P. J. (1986). Neural tissue transplants rescue axotomized rubrospinal cells from retrograde death. Journal of Comparative Neurology, 244(1), 86–95. doi:10.1002/cne.902440107.

    CAS  PubMed  Google Scholar 

  • Busch, S. A., & Silver, J. (2007). The role of extracellular matrix in CNS regeneration. Current Opinion in Neurobiology, 17(1), 120–127. doi:10.1016/j.conb.2006.09.004. S0959-4388(07)00002-5 [pii].

    CAS  PubMed  Google Scholar 

  • Callera, F., & do Nascimento, R. X. (2006). Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: A preliminary safety study. Experimental Hematology, 34(2), 130–131. doi:10.1016/j.exphem.2005.11.006.

    PubMed  Google Scholar 

  • Cao, Q., He, Q., Wang, Y., Cheng, X., Howard, R. M., Zhang, Y., et al. (2010). Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. Journal of Neuroscience, 30(8), 2989–3001. doi:10.1523/JNEUROSCI.3174-09.2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao, Q. L., Howard, R. M., Dennison, J. B., & Whittemore, S. R. (2002). Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord. Experimental Neurology, 177(2), 349–359.

    CAS  PubMed  Google Scholar 

  • Cao, Q., Xu, X. M., Devries, W. H., Enzmann, G. U., Ping, P., Tsoulfas, P., et al. (2005). Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. Journal of Neuroscience, 25(30), 6947–6957. doi:10.1523/JNEUROSCI.1065-05.2005.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao, Q. L., Zhang, Y. P., Howard, R. M., Walters, W. M., Tsoulfas, P., & Whittemore, S. R. (2001). Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Experimental Neurology, 167(1), 48–58.

    CAS  PubMed  Google Scholar 

  • Chernykh, E. R., Stupak, V. V., Muradov, G. M., Sizikov, M. Y., Shevela, E. Y., Leplina, O. Y., et al. (2007). Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bulletin of Experimental Biology and Medicine, 143(4), 543–547.

    CAS  PubMed  Google Scholar 

  • Collins, W. F. (1983). A review and update of experiment and clinical studies of spinal cord injury. Paraplegia, 21(4), 204–219.

    CAS  PubMed  Google Scholar 

  • Cummings, B. J., Uchida, N., Tamaki, S. J., Salazar, D. L., Hooshmand, M., Summers, R., et al. (2005). Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 14069–14074. doi:10.1073/pnas.0507063102.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cummings, B. J., Uchida, N., Tamaki, S. J., & Anderson, A. J. (2006). Human neural stem cell differentiation following transplantation into spinal cord injured mice: Association with recovery of locomotor function. Neurological Research, 28(5), 474–481. doi:10.1179/016164106X115116.

    PubMed  Google Scholar 

  • Davies, J. E., Huang, C., Proschel, C., Noble, M., Mayer-Proschel, M., & Davies, S. J. (2006). Astrocytes derived from glial-restricted precursors promote spinal cord repair. Journal of Biology, 5(3), 7. doi:10.1186/jbiol35.

    PubMed Central  PubMed  Google Scholar 

  • Deda, H., Inci, M. C., Kurekci, A. E., Kayihan, K., Ozgun, E., Ustunsoy, G. E., et al. (2008). Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy, 10(6), 565–574. doi:10.1080/14653240802241797.

    CAS  PubMed  Google Scholar 

  • Diener, P. S., & Bregman, B. S. (1998). Fetal spinal cord transplants support growth of supraspinal and segmental projections after cervical spinal cord hemisection in the neonatal rat. Journal of Neuroscience, 18(2), 779–793.

    CAS  PubMed  Google Scholar 

  • Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.

    CAS  PubMed  Google Scholar 

  • Fawcett, J. W., Curt, A., Steeves, J. D., Coleman, W. P., Tuszynski, M. H., Lammertse, D., et al. (2007). Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: Spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord, 45(3), 190–205. doi:10.1038/sj.sc.3102007.

    CAS  PubMed  Google Scholar 

  • Field, P., Li, Y., & Raisman, G. (2003). Ensheathment of the olfactory nerves in the adult rat. Journal of Neurocytology, 32(3), 317–324. doi:10.1023/B:NEUR.0000010089.37032.48.

    PubMed  Google Scholar 

  • Franklin, R. J. (2002). Remyelination of the demyelinated CNS: The case for and against transplantation of central, peripheral and olfactory glia. Brain Research Bulletin, 57(6), 827–832.

    PubMed  Google Scholar 

  • Fujimoto, Y., Abematsu, M., Falk, A., Tsujimura, K., Sanosaka, T., Juliandi, B., et al. (2012). Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells. Stem Cells, 30(6), 1163–1173. doi:10.1002/stem.1083.

    CAS  PubMed  Google Scholar 

  • Gage, F. H., Coates, P. W., Palmer, T. D., Kuhn, H. G., Fisher, L. J., Suhonen, J. O., et al. (1995). Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 92(25), 11879–11883.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaillard, A., Prestoz, L., Dumartin, B., Cantereau, A., Morel, F., Roger, M., et al. (2007). Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons. Nature Neuroscience, 10(10), 1294–1299. doi:10.1038/nn1970.

    CAS  PubMed  Google Scholar 

  • Geffner, L. F., Santacruz, P., Izurieta, M., Flor, L., Maldonado, B., Auad, A. H., et al. (2008). Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: Comprehensive case studies. Cell Transplantation, 17(12), 1277–1293.

    CAS  PubMed  Google Scholar 

  • Giger, R. J., Hollis, E. R., 2nd, & Tuszynski, M. H. (2010). Guidance molecules in axon regeneration. Cold Spring Harbor Perspectives in Biology, 2(7), a001867. doi:10.1101/cshperspect.a001867.

    PubMed Central  PubMed  Google Scholar 

  • Gledhill, R. F., Harrison, B. M., & McDonald, W. I. (1973). Demyelination and remyelination after acute spinal cord compression. Experimental Neurology, 38(3), 472–487.

    CAS  PubMed  Google Scholar 

  • Gregori, N., Proschel, C., Noble, M., & Mayer-Proschel, M. (2002). The tripotential glial-restricted precursor (GRP) cell and glial development in the spinal cord: Generation of bipotential oligodendrocyte-type-2 astrocyte progenitor cells and dorsal-ventral differences in GRP cell function. Journal of Neuroscience, 22(1), 248–256.

    CAS  PubMed  Google Scholar 

  • Grill, R., Murai, K., Blesch, A., Gage, F. H., & Tuszynski, M. H. (1997). Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. Journal of Neuroscience, 17(14), 5560–5572.

    CAS  PubMed  Google Scholar 

  • Gritti, A., Parati, E. A., Cova, L., Frolichsthal, P., Galli, R., Wanke, E., et al. (1996). Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. Journal of Neuroscience, 16(3), 1091–1100.

    CAS  PubMed  Google Scholar 

  • Groves, A. K., Barnett, S. C., Franklin, R. J., Crang, A. J., Mayer, M., Blakemore, W. F., et al. (1993). Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature, 362(6419), 453–455. doi:10.1038/362453a0.

    CAS  PubMed  Google Scholar 

  • Han, S. S., Liu, Y., Tyler-Polsz, C., Rao, M. S., & Fischer, I. (2004). Transplantation of glial-restricted precursor cells into the adult spinal cord: Survival, glial-specific differentiation, and preferential migration in white matter. Glia, 45(1), 1–16. doi:10.1002/glia.10282.

    PubMed  Google Scholar 

  • Hofstetter, C. P., Holmstrom, N. A., Lilja, J. A., Schweinhardt, P., Hao, J., Spenger, C., et al. (2005). Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nature Neuroscience, 8(3), 346–353. doi:10.1038/nn1405.

    CAS  PubMed  Google Scholar 

  • Honmou, O., Felts, P. A., Waxman, S. G., & Kocsis, J. D. (1996). Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. Journal of Neuroscience, 16(10), 3199–3208.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hooshmand, M. J., Sontag, C. J., Uchida, N., Tamaki, S., Anderson, A. J., & Cummings, B. J. (2009). Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: Correlation of engraftment with recovery. PloS One, 4(6), e5871. doi:10.1371/journal.pone.0005871.

    PubMed Central  PubMed  Google Scholar 

  • Houle, J. D., & Reier, P. J. (1988). Transplantation of fetal spinal cord tissue into the chronically injured adult rat spinal cord. Journal of Comparative Neurology, 269(4), 535–547. doi:10.1002/cne.902690406.

    CAS  PubMed  Google Scholar 

  • Hug, A., & Weidner, N. (2012). From bench to beside to cure spinal cord injury: Lost in translation? International Review of Neurobiology, 106, 173–196. doi:10.1016/B978-0-12-407178-0.00008-9.

    CAS  PubMed  Google Scholar 

  • Hulsebosch, C. E. (2002). Recent advances in pathophysiology and treatment of spinal cord injury. Advances in Physiology Education, 26(1–4), 238–255.

    PubMed  Google Scholar 

  • Imaizumi, T., Lankford, K. L., & Kocsis, J. D. (2000). Transplantation of olfactory ensheathing cells or Schwann cells restores rapid and secure conduction across the transected spinal cord. Brain Research, 854(1–2), 70–78.

    CAS  PubMed  Google Scholar 

  • Ishii, K., Nakamura, M., Dai, H., Finn, T. P., Okano, H., Toyama, Y., et al. (2006). Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury. Journal of Neuroscience Research, 84(8), 1669–1681. doi:10.1002/jnr.21079.

    CAS  PubMed  Google Scholar 

  • Iwanami, A., Kaneko, S., Nakamura, M., Kanemura, Y., Mori, H., Kobayashi, S., et al. (2005). Transplantation of human neural stem cells for spinal cord injury in primates. Journal of Neuroscience Research, 80(2), 182–190. doi:10.1002/jnr.20436.

    CAS  PubMed  Google Scholar 

  • Jin, Y., Fischer, I., Tessler, A., & Houle, J. D. (2002). Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Experimental Neurology, 177(1), 265–275.

    CAS  PubMed  Google Scholar 

  • Johansson, C. B., Svensson, M., Wallstedt, L., Janson, A. M., & Frisen, J. (1999). Neural stem cells in the adult human brain. Experimental Cell Research, 253(2), 733–736. doi:10.1006/excr.1999.4678.

    CAS  PubMed  Google Scholar 

  • Johe, K. K., Hazel, T. G., Muller, T., Dugich-Djordjevic, M. M., & McKay, R. D. (1996). Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes and Development, 10(24), 3129–3140.

    CAS  PubMed  Google Scholar 

  • Kaiser, J. (2011). Embryonic stem cells. Researchers mull impact of Geron’s sudden exit from field. Science, 334(6059), 1043. doi:10.1126/science.334.6059.1043.

    PubMed  Google Scholar 

  • Kakulas, B. A. (1999). A review of the neuropathology of human spinal cord injury with emphasis on special features. Journal of Spinal Cord Medicine, 22(2), 119–124.

    CAS  PubMed  Google Scholar 

  • Kalyani, A. J., & Rao, M. S. (1998). Cell lineage in the developing neural tube. Biochemistry and Cell Biology, 76(6), 1051–1068.

    CAS  PubMed  Google Scholar 

  • Karimi-Abdolrezaee, S., Eftekharpour, E., Wang, J., Morshead, C. M., & Fehlings, M. G. (2006). Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. Journal of Neuroscience, 26(13), 3377–3389. doi:10.1523/JNEUROSCI.4184-05.2006.

    CAS  PubMed  Google Scholar 

  • Keirstead, H. S., Nistor, G., Bernal, G., Totoiu, M., Cloutier, F., Sharp, K., et al. (2005). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. Journal of Neuroscience, 25(19), 4694–4705. doi:10.1523/JNEUROSCI.0311-05.2005.

    CAS  PubMed  Google Scholar 

  • Kohama, I., Lankford, K. L., Preiningerova, J., White, F. A., Vollmer, T. L., & Kocsis, J. D. (2001). Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. Journal of Neuroscience, 21(3), 944–950.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar, A. A., Kumar, S. R., Narayanan, R., Arul, K., & Baskaran, M. (2009). Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: A phase I/II clinical safety and primary efficacy data. Experimental and Clinical Transplantation, 7(4), 241–248.

    PubMed  Google Scholar 

  • Kunkel-Bagden, E., Dai, H. N., & Bregman, B. S. (1992). Recovery of function after spinal cord hemisection in newborn and adult rats: Differential effects on reflex and locomotor function. Experimental Neurology, 116(1), 40–51.

    CAS  PubMed  Google Scholar 

  • Lammertse, D., Tuszynski, M. H., Steeves, J. D., Curt, A., Fawcett, J. W., Rask, C., et al. (2007). Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: Clinical trial design. Spinal Cord, 45(3), 232–242. doi:10.1038/sj.sc.3102010.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, J. C., Mayer-Proschel, M., & Rao, M. S. (2000). Gliogenesis in the central nervous system. Glia, 30(2), 105–121.

    CAS  PubMed  Google Scholar 

  • Levine, J. M., & Reynolds, R. (1999). Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Experimental Neurology, 160(2), 333–347. doi:10.1006/exnr.1999.7224.

    CAS  PubMed  Google Scholar 

  • Li, Y., Field, P. M., & Raisman, G. (1997). Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science, 277(5334), 2000–2002.

    CAS  PubMed  Google Scholar 

  • Lu, J., Feron, F., Mackay-Sim, A., & Waite, P. M. (2002). Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain, 125(Pt 1), 14–21.

    PubMed  Google Scholar 

  • Lu, P., & Tuszynski, M. H. (2008). Growth factors and combinatorial therapies for CNS regeneration. Experimental Neurology, 209(2), 313–320. doi:10.1016/j.expneurol.2007.08.004. S0014-4886(07)00305-6 [pii].

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu, P., Wang, Y., Graham, L., McHale, K., Gao, M., Wu, D., et al. (2012). Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell, 150(6), 1264–1273. doi:10.1016/j.cell.2012.08.020.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu, P., Yang, H., Culbertson, M., Graham, L., Roskams, A. J., & Tuszynski, M. H. (2006). Olfactory ensheathing cells do not exhibit unique migratory or axonal growth-promoting properties after spinal cord injury. Journal of Neuroscience, 26(43), 11120–11130. doi:10.1523/JNEUROSCI.3264-06.2006.

    CAS  PubMed  Google Scholar 

  • Maherali, N., & Hochedlinger, K. (2008). Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell, 3(6), 595–605. doi:10.1016/j.stem.2008.11.008.

    CAS  PubMed  Google Scholar 

  • Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1(1), 55–70. doi:10.1016/j.stem.2007.05.014.

    CAS  PubMed  Google Scholar 

  • Marcus, A. J., & Woodbury, D. (2008). Fetal stem cells from extra-embryonic tissues: Do not discard. Journal of Cellular and Molecular Medicine, 12(3), 730–742. doi:10.1111/j.1582-4934.2008.00221.x.

    CAS  PubMed  Google Scholar 

  • Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78(12), 7634–7638.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayor, S. (2010). First patient enters trial to test safety of stem cells in spinal injury. BMJ, 341, c5724. doi:10.1136/bmj.c5724.

    PubMed  Google Scholar 

  • McDonald, J. W., Liu, X. Z., Qu, Y., Liu, S., Mickey, S. K., Turetsky, D., et al. (1999). Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nature Medicine, 5(12), 1410–1412. doi:10.1038/70986.

    CAS  PubMed  Google Scholar 

  • Mitsui, T., Shumsky, J. S., Lepore, A. C., Murray, M., & Fischer, I. (2005). Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. Journal of Neuroscience, 25(42), 9624–9636. doi:10.1523/JNEUROSCI.2175-05.2005.

    CAS  PubMed  Google Scholar 

  • Miura, K., Okada, Y., Aoi, T., Okada, A., Takahashi, K., Okita, K., et al. (2009). Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 27(8), 743–745. doi:10.1038/nbt.1554.

    CAS  PubMed  Google Scholar 

  • Mothe, A. J., & Tator, C. H. (2008). Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination. Experimental Neurology, 213(1), 176–190. doi:10.1016/j.expneurol.2008.05.024. S0014-4886(08)00244-6 [pii].

    CAS  PubMed  Google Scholar 

  • Mujtaba, T., Piper, D. R., Kalyani, A., Groves, A. K., Lucero, M. T., & Rao, M. S. (1999). Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Developmental Biology, 214(1), 113–127. doi:10.1006/dbio.1999.9418.

    CAS  PubMed  Google Scholar 

  • Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106. doi:10.1038/nbt1374.

    CAS  PubMed  Google Scholar 

  • Nistor, G. I., Totoiu, M. O., Haque, N., Carpenter, M. K., & Keirstead, H. S. (2005). Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia, 49(3), 385–396. doi:10.1002/glia.20127.

    PubMed  Google Scholar 

  • Nori, S., Okada, Y., Yasuda, A., Tsuji, O., Takahashi, Y., Kobayashi, Y., et al. (2011). Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proceedings of the National Academy of Sciences of the United States of America, 108(40), 16825–16830. doi:10.1073/pnas.1108077108.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. The FASEB Journal, 21(7), 1345–1357. doi:10.1096/fj.06-6769com.

    CAS  Google Scholar 

  • O'Donoghue, K., & Fisk, N. M. (2004). Fetal stem cells. Best Practice & Research. Clinical Obstetrics & Gynaecology, 18(6), 853–875. doi:10.1016/j.bpobgyn.2004.06.010.

    Google Scholar 

  • Ogawa, Y., Sawamoto, K., Miyata, T., Miyao, S., Watanabe, M., Nakamura, M., et al. (2002). Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. Journal of Neuroscience Research, 69(6), 925–933. doi:10.1002/jnr.10341.

    CAS  PubMed  Google Scholar 

  • Okada, S., Ishii, K., Yamane, J., Iwanami, A., Ikegami, T., Katoh, H., et al. (2005). In vivo imaging of engrafted neural stem cells: Its application in evaluating the optimal timing of transplantation for spinal cord injury. The FASEB Journal, 19(13), 1839–1841. doi:10.1096/fj.05-4082fje.

    CAS  Google Scholar 

  • Pal, R., Venkataramana, N. K., Bansal, A., Balaraju, S., Jan, M., Chandra, R., et al. (2009). Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: A pilot clinical study. Cytotherapy, 11(7), 897–911. doi:10.3109/14653240903253857. 10.3109/14653240903253857 [pii].

    CAS  PubMed  Google Scholar 

  • Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F., & Gage, F. H. (1999). Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. Journal of Neuroscience, 19(19), 8487–8497.

    CAS  PubMed  Google Scholar 

  • Palmer, T. D., Ray, J., & Gage, F. H. (1995). FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Molecular and Cellular Neuroscience, 6(5), 474–486. doi:10.1006/mcne.1995.1035.

    CAS  PubMed  Google Scholar 

  • Park, H. C., Shim, Y. S., Ha, Y., Yoon, S. H., Park, S. R., Choi, B. H., et al. (2005). Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Engineering, 11(5–6), 913–922. doi:10.1089/ten.2005.11.913.

    CAS  PubMed  Google Scholar 

  • Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146. doi:10.1038/nature06534.

    CAS  PubMed  Google Scholar 

  • Pfeifer, K., Vroemen, M., Blesch, A., & Weidner, N. (2004). Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury. European Journal of Neuroscience, 20(7), 1695–1704. doi:10.1111/j.1460-9568.2004.03657.x.

    PubMed  Google Scholar 

  • Pfeifer, K., Vroemen, M., Caioni, M., Aigner, L., Bogdahn, U., & Weidner, N. (2006). Autologous adult rodent neural progenitor cell transplantation represents a feasible strategy to promote structural repair in the chronically injured spinal cord. Regenerative Medicine, 1(2), 255–266. doi:10.2217/17460751.1.2.255.

    PubMed  Google Scholar 

  • Pojda, Z., Machaj, E. K., Oldak, T., Gajkowska, A., & Jastrzewska, M. (2005). Nonhematopoietic stem cells of fetal origin–how much of today’s enthusiasm will pass the time test? Folia histochemica et cytobiologica/Polish Academy of Sciences, Polish Histochemical and Cytochemical Society, 43(4), 209–212.

    PubMed  Google Scholar 

  • Ramon-Cueto, A., & Avila, J. (1998). Olfactory ensheathing glia: Properties and function. Brain Research Bulletin, 46(3), 175–187.

    CAS  PubMed  Google Scholar 

  • Ramon-Cueto, A., Cordero, M. I., Santos-Benito, F. F., & Avila, J. (2000). Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron, 25(2), 425–435. S0896-6273(00)80905-8 [pii].

    CAS  PubMed  Google Scholar 

  • Rao, M. S. (1999). Multipotent and restricted precursors in the central nervous system. The Anatomical Record, 257(4), 137–148.

    CAS  PubMed  Google Scholar 

  • Rao, M. S., & Mayer-Proschel, M. (1997). Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Developmental Biology, 188(1), 48–63. doi:10.1006/dbio.1997.8597.

    CAS  PubMed  Google Scholar 

  • Rao, M. S., Noble, M., & Mayer-Proschel, M. (1998). A tripotential glial precursor cell is present in the developing spinal cord. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 3996–4001.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nature Biotechnology, 18(4), 399–404. doi:10.1038/74447.

    CAS  PubMed  Google Scholar 

  • Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255(5052), 1707–1710.

    CAS  PubMed  Google Scholar 

  • Roy, N. S., Wang, S., Jiang, L., Kang, J., Benraiss, A., Harrison-Restelli, C., et al. (2000). In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nature Medicine, 6(3), 271–277. doi:10.1038/73119.

    CAS  PubMed  Google Scholar 

  • Saito, F., Nakatani, T., Iwase, M., Maeda, Y., Hirakawa, A., Murao, Y., et al. (2008). Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: The first clinical trial case report. Journal of Trauma, 64(1), 53–59. doi:10.1097/TA.0b013e31815b847d.

    PubMed  Google Scholar 

  • Salazar, D. L., Uchida, N., Hamers, F. P., Cummings, B. J., & Anderson, A. J. (2010). Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PloS One, 5(8), e12272. doi:10.1371/journal.pone.0012272.

    PubMed Central  PubMed  Google Scholar 

  • Salewski, R. P., Eftekharpour, E., & Fehlings, M. G. (2010). Are induced pluripotent stem cells the future of cell-based regenerative therapies for spinal cord injury? Journal of Cellular Physiology, 222(3), 515–521. doi:10.1002/jcp.21995.

    CAS  PubMed  Google Scholar 

  • Sandner, B., Rivera, F.J., Aigner, L., Blesch, A. & Weidner, N.. (2012). Bone morphogenetic proteins prevent mesenchymal stromal cell-mediated oligodendroglial differentiation of transplanted adult neural progenitor cells in the injured spinal cord (Program No. 531.09). 2012 Neuroscience Meeting Planner. New Orleans, LA: Society for Neuroscience. Online.

    Google Scholar 

  • Sasaki, M., Lankford, K. L., Zemedkun, M., & Kocsis, J. D. (2004). Identified olfactory ensheathing cells transplanted into the transected dorsal funiculus bridge the lesion and form myelin. Journal of Neuroscience, 24(39), 8485–8493. doi:10.1523/JNEUROSCI.1998-04.2004.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharp, J., Frame, J., Siegenthaler, M., Nistor, G., & Keirstead, H. S. (2010). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells, 28(1), 152–163. doi:10.1002/stem.245.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sherwood, A. M., Dimitrijevic, M. R., & McKay, W. B. (1992). Evidence of subclinical brain influence in clinically complete spinal cord injury: Discomplete SCI. Journal of Neurological Sciences, 110(1–2), 90–98.

    CAS  Google Scholar 

  • Shihabuddin, L. S., Ray, J., & Gage, F. H. (1997). FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Experimental Neurology, 148(2), 577–586. doi:10.1006/exnr.1997.6697.

    CAS  PubMed  Google Scholar 

  • Steeves, J. D., Lammertse, D., Curt, A., Fawcett, J. W., Tuszynski, M. H., Ditunno, J. F., et al. (2007). Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: Clinical trial outcome measures. Spinal Cord, 45(3), 206–221. doi:10.1038/sj.sc.3102008.

    CAS  PubMed  Google Scholar 

  • Steward, O., Sharp, K., Selvan, G., Hadden, A., Hofstadter, M., Au, E., et al. (2006). A re-assessment of the consequences of delayed transplantation of olfactory lamina propria following complete spinal cord transection in rats. Experimental Neurology, 198(2), 483–499. doi:10.1016/j.expneurol.2005.12.034.

    PubMed  Google Scholar 

  • Sykova, E., Homola, A., Mazanec, R., Lachmann, H., Konradova, S. L., Kobylka, P., et al. (2006). Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplantation, 15(8–9), 675–687.

    PubMed  Google Scholar 

  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872. doi:10.1016/j.cell.2007.11.019.

    CAS  PubMed  Google Scholar 

  • Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. doi:10.1016/j.cell.2006.07.024.

    CAS  PubMed  Google Scholar 

  • Takami, T., Oudega, M., Bates, M. L., Wood, P. M., Kleitman, N., & Bunge, M. B. (2002). Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. Journal of Neuroscience, 22(15), 6670–6681. 20026636.

    CAS  PubMed  Google Scholar 

  • Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    CAS  PubMed  Google Scholar 

  • Thuret, S., Moon, L. D., & Gage, F. H. (2006). Therapeutic interventions after spinal cord injury. Nature Reviews. Neuroscience, 7(8), 628–643. doi:10.1038/nrn1955. nrn1955 [pii].

    CAS  PubMed  Google Scholar 

  • Tsuji, O., Miura, K., Fujiyoshi, K., Momoshima, S., Nakamura, M., & Okano, H. (2011). Cell therapy for spinal cord injury by neural stem/progenitor cells derived from iPS/ES cells. Neurotherapeutics, 8(4), 668–676. doi:10.1007/s13311-011-0063-z.

    PubMed Central  PubMed  Google Scholar 

  • Tsuji, O., Miura, K., Okada, Y., Fujiyoshi, K., Mukaino, M., Nagoshi, N., et al. (2010). Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 12704–12709. doi:10.1073/pnas.0910106107.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tuszynski, M. H., Grill, R., Jones, L. L., Brant, A., Blesch, A., Low, K., et al. (2003). NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection. Experimental Neurology, 181(1), 47–56.

    CAS  PubMed  Google Scholar 

  • Tuszynski, M. H., Steeves, J. D., Fawcett, J. W., Lammertse, D., Kalichman, M., Rask, C., et al. (2007). Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP Panel: Clinical trial inclusion/exclusion criteria and ethics. Spinal Cord, 45(3), 222–231. doi:10.1038/sj.sc.3102009.

    CAS  PubMed  Google Scholar 

  • Uchida, N., Buck, D. W., He, D., Reitsma, M. J., Masek, M., Phan, T. V., et al. (2000). Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14720–14725. doi:10.1073/pnas.97.26.14720.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vats, A., Tolley, N. S., Bishop, A. E., & Polak, J. M. (2005). Embryonic stem cells and tissue engineering: Delivering stem cells to the clinic. Journal of the Royal Society of Medicine, 98(8), 346–350. doi:10.1258/jrsm.98.8.346.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vroemen, M., Aigner, L., Winkler, J., & Weidner, N. (2003). Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. European Journal of Neuroscience, 18(4), 743–751.

    PubMed  Google Scholar 

  • Vroemen, M., Caioni, M., Bogdahn, U., & Weidner, N. (2007). Failure of Schwann cells as supporting cells for adult neural progenitor cell grafts in the acutely injured spinal cord. Cell and Tissue Research, 327(1), 1–13.

    PubMed  Google Scholar 

  • Wachs, F. P., Couillard-Despres, S., Engelhardt, M., Wilhelm, D., Ploetz, S., Vroemen, M., et al. (2003). High efficacy of clonal growth and expansion of adult neural stem cells. Laboratory Investigation, 83(7), 949–962.

    PubMed  Google Scholar 

  • Wang, G., Ao, Q., Gong, K., Zuo, H., Gong, Y., & Zhang, X. (2010). Synergistic effect of neural stem cells and olfactory ensheathing cells on repair of adult rat spinal cord injury. Cell Transplantation, 19(10), 1325–1337. doi:10.3727/096368910X505855.

    PubMed  Google Scholar 

  • Wang, J. M., Zeng, Y. S., Wu, J. L., Li, Y., & Teng, Y. D. (2011). Cograft of neural stem cells and schwann cells overexpressing TrkC and neurotrophin-3 respectively after rat spinal cord transection. Biomaterials. doi:10.1016/j.biomaterials.2011.06.036.

    Google Scholar 

  • Warrington, A. E., Barbarese, E., & Pfeiffer, S. E. (1993). Differential myelinogenic capacity of specific developmental stages of the oligodendrocyte lineage upon transplantation into hypomyelinating hosts. Journal of Neuroscience Research, 34(1), 1–13. doi:10.1002/jnr.490340102.

    CAS  PubMed  Google Scholar 

  • Webber, D. J., Bradbury, E. J., McMahon, S. B., & Minger, S. L. (2007). Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord. Regenerative Medicine, 2(6), 929–945. doi:10.2217/17460751.2.6.929.

    CAS  PubMed  Google Scholar 

  • Weidner, N., Grill, R. J., & Tuszynski, M. H. (1999). Elimination of basal lamina and the collagen “scar” after spinal cord injury fails to augment corticospinal tract regeneration. Experimental Neurology, 160(1), 40–50.

    CAS  PubMed  Google Scholar 

  • Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A. C., et al. (1996). Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. Journal of Neuroscience, 16(23), 7599–7609.

    CAS  PubMed  Google Scholar 

  • Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318–324. doi:10.1038/nature05944.

    CAS  PubMed  Google Scholar 

  • Wernig, M., Zhao, J. P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., et al. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5856–5861. doi:10.1073/pnas.0801677105.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Windrem, M. S., Nunes, M. C., Rashbaum, W. K., Schwartz, T. H., Goodman, R. A., McKhann, G., 2nd, et al. (2004). Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nature Medicine, 10(1), 93–97. doi:10.1038/nm974.

    CAS  PubMed  Google Scholar 

  • Wu, Y. Y., Mujtaba, T., Han, S. S., Fischer, I., & Rao, M. S. (2002a). Isolation of a glial-restricted tripotential cell line from embryonic spinal cord cultures. Glia, 38(1), 65–79.

    PubMed  Google Scholar 

  • Wu, P., Tarasenko, Y. I., Gu, Y., Huang, L. Y., Coggeshall, R. E., & Yu, Y. (2002b). Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nature Neuroscience, 5(12), 1271–1278. doi:10.1038/nn974.

    CAS  PubMed  Google Scholar 

  • Yamamoto, S., Yamamoto, N., Kitamura, T., Nakamura, K., & Nakafuku, M. (2001). Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Experimental Neurology, 172(1), 115–127. doi:10.1006/exnr.2001.7798.

    CAS  PubMed  Google Scholar 

  • Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1(1), 39–49. doi:10.1016/j.stem.2007.05.012.

    CAS  PubMed  Google Scholar 

  • Yamanaka, S. (2009). A fresh look at iPS cells. Cell, 137(1), 13–17. doi:10.1016/j.cell.2009.03.034.

    CAS  PubMed  Google Scholar 

  • Yan, J., Xu, L., Welsh, A. M., Hatfield, G., Hazel, T., Johe, K., et al. (2007). Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Medicine, 4(2), e39. doi:10.1371/journal.pmed.0040039.

    PubMed Central  PubMed  Google Scholar 

  • Yasuda, A., Tsuji, O., Shibata, S., Nori, S., Takano, M., Kobayashi, Y., et al. (2011). Significance of Remyelination by Neural Stem/Progenitor Cells Transplanted into the Injured Spinal Cord. Stem Cells, 29(12), 1983–1994. doi:10.1002/stem.767.

    PubMed  Google Scholar 

  • Yoon, S. H., Shim, Y. S., Park, Y. H., Chung, J. K., Nam, J. H., Kim, M. O., et al. (2007). Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells, 25(8), 2066–2073. doi:10.1634/stemcells.2006-0807.

    PubMed  Google Scholar 

  • Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920. doi:10.1126/science.1151526.

    CAS  PubMed  Google Scholar 

  • Zhang, S. C., Ge, B., & Duncan, I. D. (1999). Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 4089–4094.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, X., Zeng, Y., Zhang, W., Wang, J., Wu, J., & Li, J. (2007). Co-transplantation of neural stem cells and NT-3-overexpressing Schwann cells in transected spinal cord. Journal of Neurotrauma, 24(12), 1863–1877. doi:10.1089/neu.2007.0334.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Wings for Life, Spinal Cord Research Foundation (to B.S.), the International Foundation for Research in Paraplegia (P119 to A.B. and N.W.) and the EU (IRG268282 to A.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Weidner M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sandner, B., Prang, P., Blesch, A., Weidner, N. (2015). Stem Cell-Based Therapies for Spinal Cord Regeneration. In: Kuhn, H., Eisch, A. (eds) Neural Stem Cells in Development, Adulthood and Disease. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1908-6_9

Download citation

Publish with us

Policies and ethics