Skip to main content

Neural Stem Cells and Demyelinating Disease

  • Chapter
  • First Online:
Neural Stem Cells in Development, Adulthood and Disease

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The adult central nervous system (CNS) responds to myelin loss by generating new myelin sheaths in a robust regenerative process mediated by local stem/precursor cells. This process, termed remyelination, represents an exciting ability of the CNS to repair itself and is the default response to demyelination. Remyelination reinstates rapid axonal conduction and resolves functional deficits, although it is compromised in a number of important diseases. Delayed or incomplete remyelination results in exposed axons that lack trophic support from the myelin sheath and so become vulnerable to progressive degeneration with resultant neurological dysfunction. Therapeutically enhanced remyelination in the treatment of demyelinating disease is an important and attractive goal, and current research focuses on two categories of potential therapeutics: those that stimulate endogenous stem/precursor cells and those in which new stem cells are introduced to the patient to promote remyelination. A prerequisite for successful development of such therapeutics is a detailed understanding of the major cellular players and molecular mechanisms that underpin this biological process. In this chapter, we will review the progress made in unraveling the details of remyelination, followed by a discussion on how such information is being utilized to develop stem cell therapeutics for demyelinating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama, Y., Honmou, O., Kato, T., Uede, T., Hashi, K., & Kocsis, J. D. (2001). Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Experimental Neurology, 167, 27–39.

    CAS  PubMed  Google Scholar 

  • Aquino, J. B., Hjerling-Leffler, J., Koltzenburg, M., Edlund, T., Villar, M. J., & Ernfors, P. (2006). In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. Experimental Neurology, 198, 438–449.

    CAS  PubMed  Google Scholar 

  • Archer, D. R., Cuddon, P. A., Lipsitz, D., & Duncan, I. D. (1997). Myelination of the canine central nervous system by glial cell transplantation: A model for repair of human myelin disease. Nature Medicine, 3, 54–59.

    CAS  PubMed  Google Scholar 

  • Azizi, S. A., Stokes, D., Augelli, B. J., DiGirolamo, C., & Prockop, D. J. (1998). Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats–similarities to astrocyte grafts. Proceedings of the National Academy of Sciences of the United States of America, 95, 3908–3913.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Back, S. A., Tuohy, T. M., Chen, H., Wallingford, N., Craig, A., Struve, J., et al. (2005). Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nature Medicine, 11, 966–972.

    CAS  PubMed  Google Scholar 

  • Bai, L., Lennon, D. P., Caplan, A. I., DeChant, A., Hecker, J., Kranso, J., et al. (2012). Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nature Neuroscience, 15, 862–870.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bai, L., Lennon, D. P., Eaton, V., Maier, K., Caplan, A. I., Miller, S. D., et al. (2009). Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia, 57, 1192–1203.

    PubMed Central  PubMed  Google Scholar 

  • Barhum, Y., Gai-Castro, S., Bahat-Stromza, M., Barzilay, R., Melamed, E., & Offen, D. (2010). Intracerebroventricular transplantation of human mesenchymal stem cells induced to secrete neurotrophic factors attenuates clinical symptoms in a mouse model of multiple sclerosis. Journal of molecular neuroscience, 41, 129–137.

    CAS  PubMed  Google Scholar 

  • Barnett, S. C., Alexander, C. L., Iwashita, Y., Gilson, J. M., Crowther, J., Clark, L., et al. (2000). Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain, 123(Pt 8), 1581–1588.

    PubMed  Google Scholar 

  • Baron-Van Evercooren, A., Gansmuller, A., Duhamel, E., Pascal, F., & Gumpel, M. (1992). Repair of a myelin lesion by Schwann cells transplanted in the adult mouse spinal cord. Journal of Neuroimmunology, 40, 235–242.

    CAS  PubMed  Google Scholar 

  • Barres, B. A., & Raff, M. C. (1993). Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature, 361, 258–260.

    CAS  PubMed  Google Scholar 

  • Ben-Hur, T. (2011). Cell therapy for multiple sclerosis. Neurotherapeutics, 8, 625–642.

    PubMed Central  PubMed  Google Scholar 

  • Ben-Hur, T., Einstein, O., Mizrachi-Kol, R., Ben-Menachem, O., Reinhartz, E., Karussis, D., et al. (2003). Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia, 41, 73–80.

    PubMed  Google Scholar 

  • Bergles, D. E., Roberts, J. D., Somogyi, P., & Jahr, C. E. (2000). Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature, 405, 187–191.

    CAS  PubMed  Google Scholar 

  • Beyth, S., Borovsky, Z., Mevorach, D., Liebergall, M., Gazit, Z., Aslan, H., et al. (2005). Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 105, 2214–2219.

    CAS  PubMed  Google Scholar 

  • Blakemore, W. F., & Crang, A. J. (1985). The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system. Journal of the Neurological Sciences, 70, 207–223.

    CAS  PubMed  Google Scholar 

  • Blakemore, W. F., Gilson, J. M., & Crang, A. J. (2000). Transplanted glial cells migrate over a greater distance and remyelinate demyelinated lesions more rapidly than endogenous remyelinating cells. Journal of Neuroscience Research, 61, 288–294.

    CAS  PubMed  Google Scholar 

  • Boison, D., & Stoffel, W. (1994). Disruption of the compacted myelin sheath of axons of the central nervous system in proteolipid protein-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 91, 11709–11713.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brustle, O., Jones, K. N., Learish, R. D., Karram, K., Choudhary, K., Wiestler, O. D., et al. (1999). Embryonic stem cell-derived glial precursors: A source of myelinating transplants. Science, 285, 754–756.

    CAS  PubMed  Google Scholar 

  • Cai, J., Qi, Y., Hu, X., Tan, M., Liu, Z., Zhang, J., et al. (2005). Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron, 45, 41–53.

    CAS  PubMed  Google Scholar 

  • Chang, A., Nishiyama, A., Peterson, J., Prineas, J., & Trapp, B. D. (2000). NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. The Journal of Neuroscience, 20, 6404–6412.

    CAS  PubMed  Google Scholar 

  • Chang, A., Tourtellotte, W. W., Rudick, R., & Trapp, B. D. (2002). Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. The New England Journal of Medicine, 346, 165–173.

    PubMed  Google Scholar 

  • Chari, D. M., & Blakemore, W. F. (2002). New insights into remyelination failure in multiple sclerosis: Implications for glial cell transplantation. Multiple Sclerosis, 8, 271–277.

    CAS  PubMed  Google Scholar 

  • Chari, D. M., Crang, A. J., & Blakemore, W. F. (2003). Decline in rate of colonization of oligodendrocyte progenitor cell (OPC)-depleted tissue by adult OPCs with age. Journal of Neuropathology and Experimental Neurology, 62, 908–916.

    CAS  PubMed  Google Scholar 

  • Chung, R. S., Woodhouse, A., Fung, S., Dickson, T. C., West, A. K., Vickers, J. C., et al. (2004). Olfactory ensheathing cells promote neurite sprouting of injured axons in vitro by direct cellular contact and secretion of soluble factors. Cellular and Molecular Life Sciences, 61, 1238–1245.

    CAS  PubMed  Google Scholar 

  • Clarke, L. E., Young, K. M., Hamilton, N. B., Li, H., Richardson, W. D., & Attwell, D. (2012). Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse. The Journal of Neuroscience, 32, 8173–8185.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen, J. A., Coles, A. J., Arnold, D. L., Confavreux, C., Fox, E. J., et al. (2012). Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet, 380, 1819–1828.

    CAS  PubMed  Google Scholar 

  • Coles, A. J., Twyman, C. L., Arnold, D. L., Cohen, J. A., Confavreux, C., Fox, E. J., et al. (2012). Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomised controlled phase 3 trial. Lancet, 380, 1829–1839.

    CAS  PubMed  Google Scholar 

  • Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., & Rando, T. A. (2005). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature, 433, 760–764.

    CAS  PubMed  Google Scholar 

  • Connick, P., Kolappan, M., Crawley, C., Webber, D. J., Patani, R., Patani, R., et al. (2012). Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: An open-label phase 2a proof-of-concept study. Lancet Neurology, 11, 150–156.

    PubMed Central  Google Scholar 

  • Constantin, G., Marconi, S., Rossi, B., Angiari, S., Calderan, L., Anghileri, E., et al. (2009). Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells, 27, 2624–2635.

    CAS  PubMed  Google Scholar 

  • Coutts, D. J., Humphries, C. E., Zhao, C., Plant, G. W., & Franklin, R. J. (2012). Embryonic-derived olfactory ensheathing cells remyelinate focal areas of spinal cord demyelination more efficiently than neonatal or adult derived cells. Cell Transplantation, 22(7), 1249–1261.

    PubMed  Google Scholar 

  • Crang, A. J., Gilson, J. M., Li, W. W., & Blakemore, W. F. (2004). The remyelinating potential and in vitro differentiation of MOG-expressing oligodendrocyte precursors isolated from the adult rat CNS. The European Journal of Neuroscience, 20, 1445–1460.

    CAS  PubMed  Google Scholar 

  • Cristofanilli, M., Harris, V. K., Zigelbaum, A., Goossens, A. M., Lu, A., Rosenthal, H., et al. (2011). Mesenchymal stem cells enhance the engraftment and myelinating ability of allogeneic oligodendrocyte progenitors in dysmyelinated mice. Stem Cells and Development, 20, 2065–2076.

    CAS  PubMed  Google Scholar 

  • Czepiel, M., Balasubramaniyan, V., Schaafsma, W., Stancic, M., Mikkers, H., Huisman, C., et al. (2011). Differentiation of induced pluripotent stem cells into functional oligodendrocytes. Glia, 59, 882–892.

    PubMed  Google Scholar 

  • Dawson, M. R., Polito, A., Levine, J. M., & Reynolds, R. (2003). NG2-expressing glial progenitor cells: An abundant and widespread population of cycling cells in the adult rat CNS. Molecular and Cellular Neurosciences, 24, 476–488.

    CAS  PubMed  Google Scholar 

  • Demerens, C., Stankoff, B., Logak, M., Anglade, P., Allinquant, B., Couraud, F., et al. (1996). Induction of myelination in the central nervous system by electrical activity. Proceedings of the National Academy of Sciences of the United States of America, 93, 9887–9892.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deng, W., Obrocka, M., Fischer, I., & Prockop, D. J. (2001). In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochemical and Biophysical Research Communications, 282, 148–152.

    CAS  PubMed  Google Scholar 

  • Deverman, B. E., & Patterson, P. H. (2012). Exogenous leukemia inhibitory factor stimulates oligodendrocyte progenitor cell proliferation and enhances hippocampal remyelination. The Journal of Neuroscience, 32, 2100–2109.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doucette, J. R., Jiao, R., & Nazarali, A. J. (2010). Age-related and cuprizone-induced changes in myelin and transcription factor gene expression and in oligodendrocyte cell densities in the rostral corpus callosum of mice. Cellular and Molecular Neurobiology, 30, 607–629.

    PubMed  Google Scholar 

  • Duncan, I. D., & Hoffman, R. L. (1997). Schwann cell invasion of the central nervous system of the myelin mutants. Journal of Anatomy, 190(Pt 1), 35–49.

    PubMed Central  PubMed  Google Scholar 

  • Dusart, I., Marty, S., & Peschanski, M. (1992). Demyelination, and remyelination by Schwann cells and oligodendrocytes after kainate-induced neuronal depletion in the central nervous system. Neuroscience, 51, 137–148.

    CAS  PubMed  Google Scholar 

  • Edgar, J. M., & Nave, K. A. (2009). The role of CNS glia in preserving axon function. Current Opinion in Neurobiology, 19, 498–504.

    CAS  PubMed  Google Scholar 

  • Einstein, O., Fainstein, N., Vaknin, I., Mizrachi-Kol, R., Reihartz, E., Grigoriadis, N., et al. (2007). Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Annals of Neurology, 61, 209–218.

    CAS  PubMed  Google Scholar 

  • Einstein, O., Friedman-Levi, Y., Grigoriadis, N., & Ben-Hur, T. (2009). Transplanted neural precursors enhance host brain-derived myelin regeneration. The Journal of Neuroscience, 29, 15694–15702.

    CAS  PubMed  Google Scholar 

  • Einstein, O., Karussis, D., Grigoriadis, N., Mizrachi-Kol, R., Reinhartz, E., Abramsky, O., et al. (2003). Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Molecular and Cellular Neurosciences, 24, 1074–1082.

    CAS  PubMed  Google Scholar 

  • Fancy, S. P., Baranzini, S. E., Zhao, C., Yuk, D. I., Irvine, K. A., Kaing, S., et al. (2009). Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes & Development, 23, 1571–1585.

    CAS  Google Scholar 

  • Fancy, S. P., Chan, J. R., Baranzini, S. E., Franklin, R. J., & Rowitch, D. H. (2011). Myelin regeneration: A recapitulation of development? Annual Review of Neuroscience, 34, 21–43.

    CAS  PubMed  Google Scholar 

  • Fancy, S. P., Kotter, M. R., Harrington, E. P., Huang, J. K., Zhao, C., Rowitch, D. H., et al. (2010). Overcoming remyelination failure in multiple sclerosis and other myelin disorders. Experimental Neurology, 225, 18–23.

    CAS  PubMed  Google Scholar 

  • Feron, F., Perry, C., Cochrane, J., Licina, P., Nowitzke, A., Urquhart, S., et al. (2005). Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain, 128, 2951–2960.

    CAS  PubMed  Google Scholar 

  • Ffrench-Constant, C., & Raff, M. C. (1986). Proliferating bipotential glial progenitor cells in adult rat optic nerve. Nature, 319, 499–502.

    CAS  PubMed  Google Scholar 

  • Franklin, R. J. (2002). Why does remyelination fail in multiple sclerosis? Nature reviews. Neuroscience, 3, 705–714.

    CAS  PubMed  Google Scholar 

  • Franklin, R. J., & Blakemore, W. F. (1993). Requirements for Schwann cell migration within CNS environments: A viewpoint. International Journal of Developmental Neuroscience, 11, 641–649.

    CAS  PubMed  Google Scholar 

  • Franklin, R. J., & Ffrench-Constant, C. (2008). Remyelination in the CNS: From biology to therapy. Nature Reviews. Neuroscience, 9, 839–855.

    CAS  PubMed  Google Scholar 

  • Franklin, R. J., Ffrench-Constant, C., Edgar, J. M., & Smith, K. J. (2012). Neuroprotection and repair in multiple sclerosis. Nature Reviews. Neurology, 8, 624–634.

    PubMed  Google Scholar 

  • Franklin, R. J., Gilson, J. M., Franceschini, I. A., & Barnett, S. C. (1996). Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia, 17, 217–224.

    CAS  PubMed  Google Scholar 

  • Franklin, R. J., & Hinks, G. L. (1999). Understanding CNS remyelination: Clues from developmental and regeneration biology. Journal of Neuroscience Research, 58, 207–213.

    CAS  PubMed  Google Scholar 

  • Gensert, J. M., & Goldman, J. E. (1997). Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron, 19, 197–203.

    CAS  PubMed  Google Scholar 

  • Gerdoni, E., Gallo, B., Casazza, S., Musio, S., Bonanni, I., Pedemonte, E., et al. (2007). Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Annals of Neurology, 61, 219–227.

    CAS  PubMed  Google Scholar 

  • Gordon, D., Pavlovska, G., Glover, C. P., Uney, J. B., Wraith, D., & Scolding, N. J. (2008). Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection, and with sparse CNS infiltration. Neuroscience Letters, 448, 71–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gordon, D., Pavlovska, G., Uney, J. B., Wraith, D. C., & Scolding, N. J. (2010). Human mesenchymal stem cells infiltrate the spinal cord, reduce demyelination, and localize to white matter lesions in experimental autoimmune encephalomyelitis. Journal of Neuropathology and Experimental Neurology, 69, 1087–1095.

    PubMed  Google Scholar 

  • Granger, N., Blamires, H., Franklin, R. J. M., & Jeffery, N. D. (2012). Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double-blinded trial in a canine translational model. Brain: a journal of neurology, 135, 3227–3237.

    Google Scholar 

  • Griffiths, I., Klugmann, M., Anderson, T., Yool, D., Thomson, C., Schwab, M. H., et al. (1998). Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science, 280, 1610–1613.

    CAS  PubMed  Google Scholar 

  • Groves, A. K., Barnett, S. C., Franklin, R. J., Crang, A. J., Mayer, M., Blakemore, W. F., et al. (1993). Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature, 362, 453–455.

    CAS  PubMed  Google Scholar 

  • Gupta, N., Henry, R. G., Strober, J., Kang, S. M., Lim, D. A., Bucci, M., et al. (2012). Neural stem cell engraftment and myelination in the human brain. Science Translational Medicine, 4, 155ra37.

    Google Scholar 

  • Hinks, G. L., & Franklin, R. J. (2000). Delayed changes in growth factor gene expression during slow remyelination in the CNS of aged rats. Molecular and Cellular Neurosciences, 16, 542–556.

    CAS  PubMed  Google Scholar 

  • Honmou, O., Felts, P. A., Waxman, S. G., & Kocsis, J. D. (1996). Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. The Journal of Neuroscience, 16, 3199–3208.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang, J. K., & Franklin, R. J. (2011). Regenerative medicine in multiple sclerosis: Identifying pharmacological targets of adult neural stem cell differentiation. Neurochemistry International, 59, 329–332.

    CAS  PubMed  Google Scholar 

  • Huang, J. K., Jarjour, A. A., Nait Oumesmar, B., Kerninon, C., Williams, A., Krezel, W., et al. (2011). Retinoid X receptor gamma signaling accelerates CNS remyelination. Nature Neuroscience, 14, 45–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imaizumi, T., Lankford, K. L., Waxman, S. G., Greer, C. A., & Kocsis, J. D. (1998). Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. The Journal of Neuroscience, 18, 6176–6185.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Irvine, K. A., & Blakemore, W. F. (2008). Remyelination protects axons from demyelination-associated axon degeneration. Brain, 131, 1464–1477.

    CAS  PubMed  Google Scholar 

  • Itoyama, Y., Webster, H. D., Richardson, E. P., Jr., & Trapp, B. D. (1983). Schwann cell remyelination of demyelinated axons in spinal cord multiple sclerosis lesions. Annals of Neurology, 14, 339–346.

    CAS  PubMed  Google Scholar 

  • Jadasz, J. J., Aigner, L., Rivera, F. J., & Kury, P. (2012). The remyelination Philosopher’s Stone: Stem and progenitor cell therapies for multiple sclerosis. Cell and Tissue Research, 349, 331–347.

    CAS  PubMed  Google Scholar 

  • Jeffery, N. D., Lakatos, A., & Franklin, R. J. (2005). Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. Journal of Neurotrauma, 22, 1282–1293.

    PubMed  Google Scholar 

  • Jiao, Y., Novozhilova, E., Karlen, A., Muhr, J., & Olivius, P. (2011). Olfactory ensheathing cells promote neurite outgrowth from co-cultured brain stem slice. Experimental Neurology, 229, 65–71.

    PubMed  Google Scholar 

  • Karadottir, R., Hamilton, N. B., Bakiri, Y., & Attwell, D. (2008). Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nature Neuroscience, 11, 450–456.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karumbayaram, S., Novitch, B. G., Patterson, M., Umbach, J. A., Richter, L., Lindgren, A., et al. (2009). Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells, 27, 806–811.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., Gowda-Kurkalli, B., Gomori, J. M., Kassis, I., et al. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Archives of Neurology, 67, 1187–1194.

    PubMed Central  PubMed  Google Scholar 

  • Kassis, I., Grigoriadis, N., Gowda-Kurkalli, B., Mizrachi-Kol, R., Ben-Hur, T., Slavin, S., et al. (2008). Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Archives of Neurology, 65, 753–761.

    PubMed  Google Scholar 

  • Kato, T., Honmou, O., Uede, T., Hashi, K., & Kocsis, J. D. (2000). Transplantation of human olfactory ensheathing cells elicits remyelination of demyelinated rat spinal cord. Glia, 30, 209–218.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kazanis, I. (2009). The subependymal zone neurogenic niche: A beating heart in the centre of the brain: How plastic is adult neurogenesis? Opportunities for therapy and questions to be addressed. Brain, 132, 2909–2921.

    PubMed Central  PubMed  Google Scholar 

  • Keirstead, H. S., Nistor, G., Bernal, G., Totoiu, M., Cloutier, F., Sharp, K., et al. (2005). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. The Journal of Neuroscience, 25, 4694–4705.

    CAS  PubMed  Google Scholar 

  • Kessaris, N., Fogarty, M., Iannarelli, P., Grist, M., Wegner, M., & Richardson, W. D. (2006). Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nature Neuroscience, 9, 173–179.

    CAS  PubMed  Google Scholar 

  • Kingwell, K. (2012). White matter disease: Myelination achieved by transplanted neural stem cells. Nature Reviews. Neurology, 8, 659.

    PubMed  Google Scholar 

  • Klugmann, M., Schwab, M. H., Puhlhofer, A., Schneider, A., Zimmermann, F., Griffiths, I. R., et al. (1997). Assembly of CNS myelin in the absence of proteolipid protein. Neuron, 18, 59–70.

    CAS  PubMed  Google Scholar 

  • Kohama, I., Lankford, K. L., Preiningerova, J., White, F. A., Vollmer, T. L., & Kocsis, J. D. (2001). Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. The Journal of Neuroscience, 21, 944–950.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kondo, T., & Raff, M. (2000). Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science, 289, 1754–1757.

    CAS  PubMed  Google Scholar 

  • Kornek, B., Storch, M. K., Weissert, R., Wallstroem, E., Stefferl, A., Olsson, T., et al. (2000). Multiple sclerosis and chronic autoimmune encephalomyelitis: A comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. The American Journal of Pathology, 157, 267–276.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kotter, M. R., Li, W. W., Zhao, C., & Franklin, R. J. (2006). Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. The Journal of Neuroscience, 26, 328–332.

    CAS  PubMed  Google Scholar 

  • Kotter, M. R., Stadelmann, C., & Hartung, H. P. (2011). Enhancing remyelination in disease–can we wrap it up? Brain, 134, 1882–1900.

    PubMed  Google Scholar 

  • Kramer-Albers, E. M., Bretz, N., Tenzer, S., Winterstein, C., Mobius, W., Berger, H., et al. (2007). Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clinical Applications, 1, 1446–1461.

    PubMed  Google Scholar 

  • Kuhlmann, T., Miron, V., Cui, Q., Wegner, C., Antel, J., & Bruck, W. (2008). Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain, 131, 1749–1758.

    CAS  PubMed  Google Scholar 

  • Lanza, C., Morando, S., Voci, A., Canesi, L., Principato, M. C., Serpero, L. D., et al. (2009). Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. Journal of Neurochemistry, 110, 1674–1684.

    CAS  PubMed  Google Scholar 

  • Lappe-Siefke, C., Goebbels, S., Gravel, M., Nicksch, E., Lee, J., Braun, P. E., et al. (2003). Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nature Genetics, 33, 366–374.

    CAS  PubMed  Google Scholar 

  • Lee, Y., Morrison, B. M., Li, Y., Lengacher, S., Farah, M. H., Liu, Y., et al. (2012). Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 487, 443–448.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levine, J. M., & Reynolds, R. (1999). Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Experimental Neurology, 160, 333–347.

    CAS  PubMed  Google Scholar 

  • Li, Q., Brus-Ramer, M., Martin, J. H., & McDonald, J. W. (2010). Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat. Neuroscience Letters, 479, 128–133.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li, Y., Chen, J., Chen, X. G., Wang, L., Gautam, S. C., Xu, Y. X., et al. (2002). Human marrow stromal cell therapy for stroke in rat: Neurotrophins and functional recovery. Neurology, 59, 514–523.

    CAS  PubMed  Google Scholar 

  • Li, Y., Chopp, M., Chen, J., Wang, L., Gautam, S. C., Xu, Y. X., et al. (2000). Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. Journal of Cerebral Blood Flow and Metabolism, 20, 1311–1319.

    CAS  PubMed  Google Scholar 

  • Lima, C., Pratas-Vital, J., Escada, P., Hasse-Ferreira, A., Capucho, C., & Peduzzi, J. D. (2006). Olfactory mucosa autografts in human spinal cord injury: A pilot clinical study. The Journal of Spinal Cord Medicine, 29, 191–203. discussion 04-6.

    PubMed Central  PubMed  Google Scholar 

  • Lipson, A. C., Widenfalk, J., Lindqvist, E., Ebendal, T., & Olson, L. (2003). Neurotrophic properties of olfactory ensheathing glia. Experimental Neurology, 180, 167–171.

    PubMed  Google Scholar 

  • Lombard, D. B., Chua, K. F., Mostoslavsky, R., Franco, S., Gostissa, M., & Alt, F. W. (2005). DNA repair, genome stability, and aging. Cell, 120, 497–512.

    CAS  PubMed  Google Scholar 

  • Lu, P., Jones, L. L., Snyder, E. Y., & Tuszynski, M. H. (2003). Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Experimental Neurology, 181, 115–129.

    CAS  PubMed  Google Scholar 

  • Lublin, F. D., Baier, M., & Cutter, G. (2003). Effect of relapses on development of residual deficit in multiple sclerosis. Neurology, 61, 1528–1532.

    PubMed  Google Scholar 

  • Mackay-Sim, A., Feron, F., Cochrane, J., Bassingthwaighte, L., Bayliss, C., Davies, W., et al. (2008). Autologous olfactory ensheathing cell transplantation in human paraplegia: A 3-year clinical trial. Brain, 131, 2376–2386.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahmood, A., Lu, D., Wang, L., Li, Y., Lu, M., & Chopp, M. (2001). Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery, 49, 1196–1203. discussion 203-4.

    CAS  PubMed  Google Scholar 

  • Marin-Husstege, M., Muggironi, M., Liu, A., & Casaccia-Bonnefil, P. (2002). Histone deacetylase activity is necessary for oligodendrocyte lineage progression. The Journal of Neuroscience, 22, 10333–10345.

    CAS  PubMed  Google Scholar 

  • Marriott, M. P., Emery, B., Cate, H. S., Binder, M. D., Kemper, D., Wu, Q., et al. (2008). Leukemia inhibitory factor signaling modulates both central nervous system demyelination and myelin repair. Glia, 56, 686–698.

    PubMed  Google Scholar 

  • Martino, G., Franklin, R. J., Baron Van Evercooren, A., & Kerr, D. A. (2010). Stem cell transplantation in multiple sclerosis: Current status and future prospects. Nature Reviews. Neurology, 6, 247–255.

    PubMed  Google Scholar 

  • Martino, G., & Pluchino, S. (2006). The therapeutic potential of neural stem cells. Nature Reviews. Neuroscience, 7, 395–406.

    CAS  PubMed  Google Scholar 

  • Mason, J. L., Toews, A., Hostettler, J. D., Morell, P., Suzuki, K., Goldman, J. E., et al. (2004). Oligodendrocytes and progenitors become progressively depleted within chronically demyelinated lesions. The American Journal of Pathology, 164, 1673–1682.

    PubMed Central  PubMed  Google Scholar 

  • Mi, S., Lee, X., Shao, Z., Thill, G., Ji, B., Relton, J., et al. (2004). LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nature Neuroscience, 7, 221–228.

    CAS  PubMed  Google Scholar 

  • Miller, R. H. (1996). Oligodendrocyte origins. Trends in Neurosciences, 19, 92–96.

    CAS  PubMed  Google Scholar 

  • Miller, R. H. (2005). Dorsally derived oligodendrocytes come of age. Neuron, 45, 1–3.

    CAS  PubMed  Google Scholar 

  • Minguell, J. J., Erices, A., & Conget, P. (2001). Mesenchymal stem cells. Experimental Biology and Medicine, 226, 507–520.

    CAS  PubMed  Google Scholar 

  • Murtie, J. C., Zhou, Y. X., Le, T. Q., Vana, A. C., & Armstrong, R. C. (2005). PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiology of Disease, 19, 171–182.

    CAS  PubMed  Google Scholar 

  • Nait-Oumesmar, B., Decker, L., Lachapelle, F., Avellana-Adalid, V., Bachelin, C., & Baron-Van, E. A. (1999). Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. The European Journal of Neuroscience, 11, 4357–4366.

    CAS  PubMed  Google Scholar 

  • Nait-Oumesmar, B., Picard-Riera, N., Kerninon, C., Decker, L., Seilhean, D., Hoglinger, G. U., et al. (2007). Activation of the subventricular zone in multiple sclerosis: Evidence for early glial progenitors. Proceedings of the National Academy of Sciences of the United States of America, 104, 4694–4699.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nave, K. A., & Trapp, B. D. (2008). Axon-glial signaling and the glial support of axon function. Annual Review of Neuroscience, 31, 535–561.

    CAS  PubMed  Google Scholar 

  • Novotny, G. E. (1984). Formation of cytoplasm-containing vesicles from double-walled coated invaginations containing oligodendrocytic cytoplasm at the axon-myelin sheath interface in adult mammalian central nervous system. Acta Anatomica, 119, 106–112.

    CAS  PubMed  Google Scholar 

  • Padovan, C. S., Jahn, K., Birnbaum, T., Reich, P., Sostak, P., Strupp, M., et al. (2003). Expression of neuronal markers in differentiated marrow stromal cells and CD133+ stem-like cells. Cell Transplantation, 12, 839–848.

    PubMed  Google Scholar 

  • Pan, B., Fromholt, S. E., Hess, E. J., Crawford, T. O., Griffin, J. W., Sheikh, K. A., et al. (2005). Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: Neuropathology and behavioral deficits in single- and double-null mice. Experimental Neurology, 195, 208–217.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park, Y., & Gerson, S. L. (2005). DNA repair defects in stem cell function and aging. Annual Review of Medicine, 56, 495–508.

    CAS  PubMed  Google Scholar 

  • Penderis, J., Shields, S. A., & Franklin, R. J. (2003). Impaired remyelination and depletion of oligodendrocyte progenitors does not occur following repeated episodes of focal demyelination in the rat central nervous system. Brain, 126, 1382–1391.

    PubMed  Google Scholar 

  • Peru, R. L., Mandrycky, N., Nait-Oumesmar, B., & Lu, Q. R. (2008). Paving the axonal highway: From stem cells to myelin repair. Stem Cell Reviews, 4, 304–318.

    CAS  PubMed  Google Scholar 

  • Pluchino, S., Gritti, A., Blezer, E., Amadio, S., Brambilla, E., Borsellino, G., et al. (2009). Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Annals of Neurology, 66, 343–354.

    CAS  PubMed  Google Scholar 

  • Pluchino, S., Quattrini, A., Brambilla, E., Gritti, A., Salani, G., Dina, G., et al. (2003). Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature, 422, 688–694.

    CAS  PubMed  Google Scholar 

  • Pluchino, S., Zanotti, L., Rossi, B., Brambilla, E., Ottoboni, L., Salani, G., et al. (2005). Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature, 436, 266–271.

    CAS  PubMed  Google Scholar 

  • Politi, L. S., Bacigaluppi, M., Brambilla, E., Cadioli, M., Falini, A., Comi, G., et al. (2007). Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis. Stem Cells, 25, 2583–2592.

    PubMed  Google Scholar 

  • Popescu, B. F., & Lucchinetti, C. F. (2012). Pathology of demyelinating diseases. Annual Review of Pathology, 7, 185–217.

    CAS  PubMed  Google Scholar 

  • Psachoulia, K., Jamen, F., Young, K. M., & Richardson, W. D. (2009). Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biology, 5, 57–67.

    PubMed  Google Scholar 

  • Raff, M. C., Miller, R. H., & Noble, M. (1983). A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature, 303, 390–396.

    CAS  PubMed  Google Scholar 

  • Ramon-Cueto, A., Cordero, M. I., Santos-Benito, F. F., & Avila, J. (2000). Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron, 25, 425–435.

    CAS  PubMed  Google Scholar 

  • Rando, T. A. (2006). Stem cells, ageing and the quest for immortality. Nature, 441, 1080–1086.

    CAS  PubMed  Google Scholar 

  • Reynolds, R., Dawson, M., Papadopoulos, D., Polito, A., Di Bello, I. C., Pham-Dinh, D., et al. (2002). The response of NG2-expressing oligodendrocyte progenitors to demyelination in MOG-EAE and MS. Journal of Neurocytology, 31, 523–536.

    PubMed  Google Scholar 

  • Richardson, W. D., Kessaris, N., & Pringle, N. (2006). Oligodendrocyte wars. Nature Reviews. Neuroscience, 7, 11–18.

    CAS  PubMed  Google Scholar 

  • Richardson, W. D., Pringle, N. P., Yu, W. P., & Hall, A. C. (1997). Origins of spinal cord oligodendrocytes: Possible developmental and evolutionary relationships with motor neurons. Developmental Neuroscience, 19, 58–68.

    CAS  PubMed  Google Scholar 

  • Richardson, W. D., Young, K. M., Tripathi, R. B., & McKenzie, I. (2011). NG2-glia as multipotent neural stem cells: Fact or fantasy? Neuron, 70, 661–673.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rinholm, J. E., & Bergersen, L. H. (2012). Neuroscience: The wrap that feeds neurons. Nature, 487, 435–436.

    CAS  PubMed  Google Scholar 

  • Rivera, F. J., Couillard-Despres, S., Pedre, X., Ploetz, S., Caioni, M., Lois, C., et al. (2006). Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells, 24, 2209–2219.

    CAS  PubMed  Google Scholar 

  • Rivera, F. J., Siebzehnrubl, F. A., Kandasamy, M., Couillard-Despres, S., Caioni, M., Poehler, A. M., et al. (2009). Mesenchymal stem cells promote oligodendroglial differentiation in hippocampal slice cultures. Cellular Physiology and Biochemistry, 24, 317–324.

    CAS  PubMed  Google Scholar 

  • Rivers, L. E., Young, K. M., Rizzi, M., Jamen, F., Psachoulia, K., Wade, A., et al. (2008). PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nature Neuroscience, 11, 1392–1401.

    CAS  PubMed  Google Scholar 

  • Rowitch, D. H. (2004). Glial specification in the vertebrate neural tube. Nature Reviews. Neuroscience, 5, 409–419.

    CAS  PubMed  Google Scholar 

  • Ruckh, J. M., Zhao, J. W., Shadrach, J. L., van Wijngaarden, P., Rao, T. N., Wagers, A. J., et al. (2012). Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell, 10, 96–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Runyan, S. A., & Phelps, P. E. (2009). Mouse olfactory ensheathing glia enhance axon outgrowth on a myelin substrate in vitro. Experimental Neurology, 216, 95–104.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology, 164, 247–256.

    CAS  PubMed  Google Scholar 

  • Selmani, Z., Naji, A., Zidi, I., Favier, B., Gaiffe, E., Obert, L., et al. (2008). Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4 + CD25highFOXP3+ regulatory T cells. Stem Cells, 26, 212–222.

    CAS  PubMed  Google Scholar 

  • Shen, S., Sandoval, J., Swiss, V. A., Li, J., Dupree, J., Franklin, R. J., et al. (2008). Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nature Neuroscience, 11, 1024–1034.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shields, S., Gilson, J., Blakemore, W., & Franklin, R. (2000). Remyelination occurs as extensively but more slowly in old rats compared to young rats following fliotoxin-induced CNS demyelination. Glia, 29, 102.

    PubMed  Google Scholar 

  • Smith, K. J., Blakemore, W. F., & McDonald, W. I. (1979). Central remyelination restores secure conduction. Nature, 280, 395–396.

    CAS  PubMed  Google Scholar 

  • Sotgiu, S., Pugliatti, M., Fois, M. L., Arru, G., Sanna, A., Sotgiu, M. A., et al. (2004). Genes, environment, and susceptibility to multiple sclerosis. Neurobiology of Disease, 17, 131–143.

    CAS  PubMed  Google Scholar 

  • Spencer, P. S., & Thomas, P. K. (1974). Ultrastructural studies of the dying-back process. II. The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseases axons. Journal of Neurocytology, 3, 763–783.

    CAS  PubMed  Google Scholar 

  • Steffenhagen, C., Dechant, F. X., Oberbauer, E., Furtner, T., Weidner, N., Kury, P., et al. (2012). Mesenchymal stem cells prime proliferating adult neural progenitors toward an oligodendrocyte fate. Stem Cells and Development, 21, 1838–1851.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swistowski, A., Peng, J., Liu, Q., Mali, P., Rao, M. S., Cheng, L., et al. (2010). Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells, 28, 1893–1904.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Talbott, J. F., Loy, D. N., Liu, Y., Qiu, M. S., Bunge, M. B., Rao, M. S., et al. (2005). Endogenous Nkx2.2+/Olig2+ oligodendrocyte precursor cells fail to remyelinate the demyelinated adult rat spinal cord in the absence of astrocytes. Experimental Neurology, 192, 11–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang, D. G., Tokumoto, Y. M., & Raff, M. C. (2000). Long-term culture of purified postnatal oligodendrocyte precursor cells. Evidence for an intrinsic maturation program that plays out over months. The Journal of Cell Biology, 148, 971–984.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tripathi, R. B., Clarke, L. E., Burzomato, V., Kessaris, N., Anderson, P. N., Attwell, D., et al. (2011). Dorsally and ventrally derived oligodendrocytes have similar electrical properties but myelinate preferred tracts. The Journal of Neuroscience, 31, 6809–6819.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tripathi, R. B., Rivers, L. E., Young, K. M., Jamen, F., & Richardson, W. D. (2010). NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. The Journal of Neuroscience, 30, 16383–16390.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuji, O., Miura, K., Okada, Y., Fujiyoshi, K., Mukaino, M., Nagoshi, N., et al. (2010). Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 107, 12704–12709.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uccelli, A., Laroni, A., & Freedman, M. S. (2011). Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurology, 10, 649–656.

    CAS  Google Scholar 

  • Uccelli, A., Moretta, L., & Pistoia, V. (2006). Immunoregulatory function of mesenchymal stem cells. European Journal of Immunology, 36, 2566–2573.

    CAS  PubMed  Google Scholar 

  • Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews. Immunology, 8, 726–736.

    CAS  PubMed  Google Scholar 

  • Uchida, N., Chen, K., Dohse, M., Hansen, K. D., Dean, J., Buser, J. R., et al. (2012). Human neural stem cells induce functional myelination in mice with severe dysmyelination. Science Translational Medicine, 4, 155ra36.

    Google Scholar 

  • Vallstedt, A., Klos, J. M., & Ericson, J. (2005). Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron, 45, 55–67.

    CAS  PubMed  Google Scholar 

  • Ventura, R. E., & Goldman, J. E. (2006). Telencephalic oligodendrocytes battle it out. Nature Neuroscience, 9, 153–154.

    CAS  PubMed  Google Scholar 

  • Wang, S., Sdrulla, A. D., diSibio, G., Bush, G., Nofziger, D., Hicks, C., et al. (1998). Notch receptor activation inhibits oligodendrocyte differentiation. Neuron, 21, 63–75.

    PubMed  Google Scholar 

  • Wilkins, A., Majed, H., Layfield, R., Compston, A., & Chandran, S. (2003). Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: A novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. The Journal of Neuroscience, 23, 4967–4974.

    CAS  PubMed  Google Scholar 

  • Williams, A., Piaton, G., Aigrot, M. S., Belhadi, A., Theaudin, M., Petermann, F., et al. (2007). Semaphorin 3A and 3F: Key players in myelin repair in multiple sclerosis? Brain, 130, 2554–2565.

    PubMed  Google Scholar 

  • Windrem, M. S., Nunes, M. C., Rashbaum, W. K., Schwartz, T. H., Goodman, R. A., McKhann, G., 2nd, et al. (2004). Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nature Medicine, 10, 93–97.

    CAS  PubMed  Google Scholar 

  • Windrem, M. S., Schanz, S. J., Guo, M., Tian, G. F., Washco, V., Stanwood, N., et al. (2008). Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell, 2, 553–565.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolswijk, G. (1998). Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. The Journal of Neuroscience, 18, 601–609.

    CAS  PubMed  Google Scholar 

  • Wolswijk, G., & Noble, M. (1992). Cooperation between PDGF and FGF converts slowly dividing O-2Aadult progenitor cells to rapidly dividing cells with characteristics of O-2Aperinatal progenitor cells. The Journal of Cell Biology, 118, 889–900.

    CAS  PubMed  Google Scholar 

  • Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61, 364–370.

    CAS  PubMed  Google Scholar 

  • Woodhall, E., West, A. K., & Chuah, M. I. (2001). Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Research. Molecular Brain Research, 88, 203–213.

    CAS  PubMed  Google Scholar 

  • Woodruff, R. H., Fruttiger, M., Richardson, W. D., & Franklin, R. J. (2004). Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Molecular and Cellular Neurosciences, 25, 252–262.

    CAS  PubMed  Google Scholar 

  • Wren, D., Wolswijk, G., & Noble, M. (1992). In vitro analysis of the origin and maintenance of O-2Aadult progenitor cells. The Journal of Cell Biology, 116, 167–176.

    CAS  PubMed  Google Scholar 

  • Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdonni, E., et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106, 1755–1761.

    CAS  PubMed  Google Scholar 

  • Zawadzka, M., Rivers, L. E., Fancy, S. P., Zhao, C., Tripathi, R., Jamen, F., et al. (2010). CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell, 6, 578–590.

    CAS  PubMed  Google Scholar 

  • Zhang, J., Li, Y., Chen, J., Cui, Y., Lu, M., Elias, S. B., et al. (2005). Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Experimental Neurology, 195, 16–26.

    CAS  PubMed  Google Scholar 

  • Zhang, J., Li, Y., Lu, M., Cui, Y., Chen, J., Noffsinger, L., et al. (2006). Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. Journal of Neuroscience Research, 84, 587–595.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Klassen, H. J., Tucker, B. A., Perez, M. T., & Young, M. J. (2007). CNS progenitor cells promote a permissive environment for neurite outgrowth via a matrix metalloproteinase-2-dependent mechanism. The Journal of Neuroscience, 27, 4499–4506.

    CAS  PubMed  Google Scholar 

  • Zhao, C., Li, W. W., & Franklin, R. J. (2006). Differences in the early inflammatory responses to toxin-induced demyelination are associated with the age-related decline in CNS remyelination. Neurobiology of Aging, 27, 1298–1307.

    CAS  PubMed  Google Scholar 

  • Zhu, Q., Whittemore, S. R., Devries, W. H., Zhao, X., Kuypers, N. J., & Qiu, M. (2011). Dorsally-derived oligodendrocytes in the spinal cord contribute to axonal myelination during development and remyelination following focal demyelination. Glia, 59, 1612–1621.

    PubMed  Google Scholar 

  • Zujovic, V., Thibaud, J., Bachelin, C., Vidal, M., Coulpier, F., Charnay, P., et al. (2010). Boundary cap cells are highly competitive for CNS remyelination: Fast migration and efficient differentiation in PNS and CNS myelin-forming cells. Stem Cells, 28, 470–479.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin J. M. Franklin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crawford, A.H., Franklin, R.J.M. (2015). Neural Stem Cells and Demyelinating Disease. In: Kuhn, H., Eisch, A. (eds) Neural Stem Cells in Development, Adulthood and Disease. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1908-6_8

Download citation

Publish with us

Policies and ethics