Skip to main content

Stem Cells and Neurogenesis in Relation to Dementia and Alzheimer’s Disease Mouse Models

  • Chapter
  • First Online:
Book cover Neural Stem Cells in Development, Adulthood and Disease

Abstract

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder associated with progressive cognitive decline and extensive neuropathology throughout the brain. Its main features include limited cell loss in selected subregions, generalized brain atrophy, and gradual accumulation of β-amyloid plaques and neurofibrillary tangles in several brain regions. One of the earliest and most prominently affected brain regions is the hippocampus, a brain structure involved in learning and memory that displays prominent cell loss in its CA1 subregion as well as abundant plaque and tangle pathology.

Recent studies have identified the presence of stem cells in brains of adult rodents, primates, and also humans. Only in a few subregions do these stem cells continue to proliferate and differentiate to form new neurons within the mature brain, a process known as adult neurogenesis. Adult neurogenesis occurs in the hippocampal subgranular zone and in the subventricular zone of the lateral ventricles and olfactory bulb. These adult-generated neurons are involved in learning and memory and respond well to various hormonal and environmental factors, like stress, age, physical exercise, and also, surprisingly, to hippocampal insults. With the discovery of functional adult neurogenesis and increasing insights role in cognition and into its environmental control, hopes have risen that stem cells in the adult brain could one day be used to modulate neurodegeneration, and/or cognition e.g., by stimulating neuroregeneration. In this chapter, we discuss properties of stem cells and neurogenesis and their changes during the development of neuropathology and functional deficits in Alzheimer’s disease and some of its main animal models. In addition, we discuss possibilities to stimulate stem cells and neurogenesis for therapeutic purposes in relation to dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberg, M. A., Aberg, N. D., Hedbacker, H., Oscarsson, J., & Eriksson, P. S. (2000). Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. Journal of Neuroscience, 20, 2896–2903.

    CAS  PubMed  Google Scholar 

  • Abrous, D. N., Koehl, M., & Le Moal, M. (2005). Adult neurogenesis: From precursors to network and physiology. Physiological Reviews, 85(2), 523–569.

    CAS  PubMed  Google Scholar 

  • Adlard, P. A., Perreau, V. M., Pop, V., & Cotman, C. W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. Journal of Neuroscience, 25, 4217–4221.

    CAS  PubMed  Google Scholar 

  • Alonso, M., Viollet, C., Gabellec, M. M., Meas-Yedid, V., Olivo-Marin, J. C., & Lledo, P. M. (2006). Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. Journal of Neuroscience, 26, 10508–10513.

    CAS  PubMed  Google Scholar 

  • Altman, J. (1962). Are new neurons formed in the brains of adult mammals? Science, 135, 1128–1129.

    Google Scholar 

  • Anderson, M. L., Sisti, H. M., Curlik, D. M., 2nd, & Shors, T. J. (2011). Associative learning increases adult neurogenesis during a critical period. European Journal of Neuroscience, 33(1), 175–181.

    PubMed Central  PubMed  Google Scholar 

  • Arendt, T., Rodel, L., Gartner, U., & Holzer, M. (1996). Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer’s disease. Neuroreport, 7, 3047–3049.

    CAS  PubMed  Google Scholar 

  • Bayer, T. A., & Wirths, O. (2011). Intraneuronal Abeta as a trigger for neuron loss: Can this be translated into human pathology? Biochemical Society Transactions, 39, 857–861.

    CAS  PubMed  Google Scholar 

  • Bayer, T. A., & Wirths, O. (2014). Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer’s disease. Acta Neuropathologica, 127(6), 787–801.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett, D. A., Schneider, J. A., Tang, Y., Arnold, S. E., & Wilson, R. S. (2006). The effect of social networks on the relation between Alzheimer’s disease pathology and level of cognitive function in old people: A longitudinal cohort study. Lancet Neurology, 5, 406–412.

    Google Scholar 

  • Bielefeld, P., van Vliet, E. A., Gorter, J. A., Lucassen, P. J., & Fitzsimons, C. P. (2014). Different subsets of newborn granule cells: A possible role in epileptogenesis? European Journal of Neuroscience, 39(1), 1–11.

    PubMed  Google Scholar 

  • Blumcke, I., Schewe, J. C., Normann, S., Brustle, O., Schramm, J., Elger, C. E., & Wiestler, O. D. (2001). Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus, 11, 311–321.

    CAS  PubMed  Google Scholar 

  • Boekhoorn, K., Joels, M., & Lucassen, P. J. (2006a). Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiology of Disease, 24, 1–14.

    CAS  PubMed  Google Scholar 

  • Boekhoorn, K., Terwel, D., Biemans, B., Borghgraef, P., Wiegert, O., Ramakers, G. J., de Vos, K., Krugers, H., Tomiyama, T., Mori, H., Joels, M., van Leuven, F., & Lucassen, P. J. (2006b). Improved long-term potentiation and memory in young tau-P301L transgenic mice before onset of hyperphosphorylation and tauopathy. Journal of Neuroscience, 26(13), 3514–3523.

    CAS  PubMed  Google Scholar 

  • Bondolfi, L., Calhoun, M., Ermini, F., Kuhn, H. G., Wiederhold, K. H., Walker, L., Staufenbiel, M., & Jucker, M. (2002). Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice. Journal of Neuroscience, 22(2), 515–522.

    CAS  PubMed  Google Scholar 

  • Bondolfi, L., Ermini, F., Long, J. M., Ingram, D. K., & Jucker, M. (2004). Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiology of Aging, 25, 333–340.

    CAS  PubMed  Google Scholar 

  • Brown, J. P., Couillard-Despres, S., Cooper-Kuhn, C. M., Winkler, J., Aigner, L., & Kuhn, H. G. (2003). Transient expression of doublecortin during adult neurogenesis. The Journal of Comparative Neurology, 467, 1–10.

    CAS  PubMed  Google Scholar 

  • Bruel-Jungerman, E., Lucassen, P. J., & Francis, F. (2011). Cholinergic influences on cortical development and adult neurogenesis. Behavioural Brain Research, 221(2), 379–388.

    CAS  PubMed  Google Scholar 

  • Brummelte, S., & Galea, L. A. (2010). Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience, 168(3), 680–690.

    CAS  PubMed  Google Scholar 

  • Busser, J., Geldmacher, D. S., & Herrup, K. (1998). Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. Journal of Neuroscience, 18, 2801–2807.

    CAS  PubMed  Google Scholar 

  • Caille, I., Allinquant, B., Dupont, E., Bouillot, C., Langer, A., Muller, U., & Prochiantz, A. (2004). Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development, 131, 2173–2181.

    CAS  PubMed  Google Scholar 

  • Cameron, H. A., Glover, L. R. (2014). Adult Neurogenesis: Beyond learning and memory. Annu Rev Psychol. [Epub ahead].

    Google Scholar 

  • Cameron, H. A., & McKay, R. D. (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. The Journal of Comparative Neurology, 435, 406–417.

    CAS  PubMed  Google Scholar 

  • Caricasole, A., Copani, A., Caruso, A., Caraci, F., Iacovelli, L., Sortino, M. A., Terstappen, G. C., & Nicoletti, F. (2003). The Wnt pathway, cell-cycle activation and beta-amyloid: Novel therapeutic strategies in Alzheimer’s disease? Trends in Pharmacological Sciences, 24(5), 233–238.

    CAS  PubMed  Google Scholar 

  • Chadwick, W., Mitchell, N., Caroll, J., Zhou, Y., Park, S. S., Wang, L., Becker, K. G., Zhang, Y., Lehrmann, E., Wood, W. H., 3rd, Martin, B., & Maudsley, S. (2011). Amitriptyline-mediated cognitive enhancement in aged 3 × Tg Alzheimer’s disease mice is associated with neurogenesis and neurotrophic activity. PLoS One, 6(6), e21660.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, W. W., & Blurton-Jones, M. (2012). Concise review: Can stem cells be used to treat or model Alzheimer’s disease? Stem Cells, 30(12), 2612–2618.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, Y., & Tang, B. L. (2006). The amyloid precursor protein and postnatal neurogenesis/neuroregeneration. Biochemical and Biophysical Research Communications, 341, 1–5.

    CAS  PubMed  Google Scholar 

  • Chevallier, N. L., Soriano, S., Kang, D. E., Masliah, E., Hu, G., & Koo, E. H. (2005). Perturbed neurogenesis in the adult hippocampus associated with presenilin-1 A246E mutation. American Journal of Pathology, 167, 151–159.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clelland, C. D., Choi, M., Romberg, C., Clemenson, G. D., Jr., Fragniere, A., Tyers, P., Jessberger, S., Saksida, L. M., Barker, R. A., Gage, F. H., & Bussey, T. J. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937), 210–213.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coras, R., Siebzehnrubl, F. A., Pauli, E., Huttner, H. B., Njunting, M., Kobow, K., Villmann, C., Hahnen, E., Neuhuber, W., Weigel, D., Buchfelder, M., Stefan, H., Beck, H., Steindler, D. A., Blümcke, I. (2010). Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunction in humans. Brain. 2010 Nov;133(11):3359–72.

    Google Scholar 

  • Cooper-Kuhn, C. M., Winkler, J., & Kuhn, H. G. (2004). Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. Journal of Neuroscience Research, 77, 155–165.

    CAS  PubMed  Google Scholar 

  • Cotel, M. C., Jawhar, S., Christensen, D. Z., Bayer, T. A., & Wirths, O. (2012). Environmental enrichment fails to rescue working memory deficits, neuron loss, and neurogenesis in APP/PS1KI mice. Neurobiology of Aging, 33(1), 96–107.

    PubMed  Google Scholar 

  • Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25, 295–301.

    CAS  PubMed  Google Scholar 

  • Couillard-Després, S. (2013). Hippocampal neurogenesis and ageing. Current Topics in Behavioral Neurosciences, 15, 343–355.

    PubMed  Google Scholar 

  • Couillard-Despres, S., Winner, B., Schaubeck, S., Aigner, R., Vroemen, M., Weidner, N., Bogdahn, U., Winkler, J., Kuhn, H. G., & Aigner, L. (2005). Doublecortin expression levels in adult brain reflect neurogenesis. European Journal of Neuroscience, 21, 1–14.

    PubMed  Google Scholar 

  • Covolan, L., Ribeiro, L. T., Longo, B. M., & Mello, L. E. (2000). Cell damage and neurogenesis in the dentate granule cell layer of adult rats after pilocarpine- or kainate-induced status epilepticus. Hippocampus, 10(2), 169–180.

    CAS  PubMed  Google Scholar 

  • Crews, L., Adame, A., Patrick, C., Delaney, A., Pham, E., Rockenstein, E., Hansen, L., & Masliah, E. (2010a). Increased BMP6 levels in the brains of Alzheimer’s disease patients and APP transgenic mice are accompanied by impaired neurogenesis. Journal of Neuroscience, 30(37), 12252–12262.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crews, L., Rockenstein, E., & Masliah, E. (2010b). APP transgenic modeling of Alzheimer’s disease: Mechanisms of neurodegeneration and aberrant neurogenesis. Brain Structure and Function, 214(2–3), 111–126.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cross, D1., Tapia, L., Garrido, J., Maccioni, R. B. (1996). Tau-like proteins associated with centrosomes in cultured cells. Exp Cell Res. 229(2):378–387.

    Google Scholar 

  • Curlik, D. M., 2nd, & Shors, T. J. (2011). Learning increases the survival of newborn neurons provided that learning is difficult to achieve and successful. Journal Cognitive Neuroscience, 23(9), 2159–2170.

    Google Scholar 

  • Curtis, M. A., Kam, M., & Faull, R. L. (2011). Neurogenesis in humans. European Journal of Neuroscience, 33(6), 1170–1174.

    PubMed  Google Scholar 

  • Dayer, A. G., Ford, A. A., Cleaver, K. M., Yassaee, M., & Cameron, H. A. (2003). Short-term and long-term survival of new neurons in the rat dentate gyrus. The Journal of Comparative Neurology, 460, 563–572.

    PubMed  Google Scholar 

  • Deisseroth, K., Singla, S., Toda, H., Monje, M., Palmer, T. D., & Malenka, R. C. (2004). Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron, 42, 535–552.

    CAS  PubMed  Google Scholar 

  • Delobel, P., Flament, S., Hamdane, M., Mailliot, C., Sambo, A. V., Bégard, S., Sergeant, N., Delacourte, A., Vilain, J. P., & Buée, L. (2002). Abnormal Tau phosphorylation of the Alzheimer-type also occurs during mitosis. Journal of Neurochemistry, 83(2), 412–420.

    CAS  PubMed  Google Scholar 

  • Delobel, P., Lavenir, I., Ghetti, B., Holzer, M., & Goedert, M. (2006). Cell-cycle markers in a transgenic mouse model of human tauopathy: Increased levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1. American Journal of Pathology, 168(3), 878–887.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demars, M. P., Hollands, C., Zhao Kda, T., & Lazarov, O. (2013). Soluble amyloid precursor protein-α rescues age-linked decline in neural progenitor cell proliferation. Neurobiology of Aging, 34(10), 2431–2440.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demars, M., Hu, Y. S., Gadadhar, A., & Lazarov, O. (2010). Impaired neurogenesis is an early event in the etiology of familial Alzheimer’s disease in transgenic mice. Journal of Neuroscience Research, 88(10), 2103–2117.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dong, H., Goico, B., Martin, M., Csernansky, C. A., Bertchume, A., & Csernansky, J. G. (2004). Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience, 127, 601–609.

    CAS  PubMed  Google Scholar 

  • Donovan, M. H., Yazdani, U., Norris, R. D., Games, D., German, D. C., & Eisch, A. J. (2006). Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer’s disease. The Journal of Comparative Neurology, 495, 70–83.

    PubMed  Google Scholar 

  • Doorn, K. J., Drukarch, B., van Dam, A-M., & Lucassen, P. J. (2014). Hippocampal proliferation is increased in presymptomatic parkinson’s disease and due to Microglia, Neural Plasticity, vol. 2014, Article ID 959154, p. 13. doi:10.1155/2014/959154.

    Google Scholar 

  • Drapeau, E., Montaron, M. F., Aguerre, S., & Abrous, D. N. (2007). Learning-induced survival of new neurons depends on the cognitive status of aged rats. Journal of Neuroscience, 27(22), 6037–6044.

    CAS  PubMed  Google Scholar 

  • Dupret, D., Fabre, A., Döbrössy, M. D., Panatier, A., Rodríguez, J. J., Lamarque, S., Lemaire, V., Oliet, S. H., Piazza, P. V., & Abrous, D. N. (2007). Spatial learning depends on both the addition and removal of new hippocampal neurons. PLoS Biology, 5(8), e214.

    PubMed Central  PubMed  Google Scholar 

  • Duyckaerts, C., & Hauw, J. J. (1997). Diagnosis and staging of Alzheimer disease. Neurobiology of Aging, 18, S33–S42.

    CAS  PubMed  Google Scholar 

  • Eder-Colli, L., Abad-Estarlich, N., Pannetier, C., Vallet, P. G., Walzer, C., Elder, G. A., Robakis, N. K., Bouras, C., & Savioz, A. (2009). The presenilin-1 familial Alzheimer’s disease mutation P117L decreases neuronal differentiation of embryonic murine neural progenitor cells. Brain Research Bulletin, 80(4–5), 296–301.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elder, G. A., Gama Sosa, M. A., De Gasperi, R., Dickstein, D. L., & Hof, P. R. (2010). Presenilin transgenic mice as models of Alzheimer’s disease. Brain Structure and Function, 214(2–3), 127–143.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313–1317.

    CAS  PubMed  Google Scholar 

  • Ermini, F. V., Grathwohl, S., Radde, R., Yamaguchi, M., Staufenbiel, M., Palmer, T. D., & Jucker, M. (2008). Neurogenesis and alterations of neural stem cells in mouse models of cerebral amyloidosis. American Journal of Pathology, 172(6), 1520–1528.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., Possnert, G., Druid, H., Frisén, J. (2014). Neurogenesis in the striatum of the adult human brain. Cell, 156(5):1072–83. doi: 10.1016/j.cell.2014.01.044.

    CAS  PubMed  Google Scholar 

  • Feng, R., Rampon, C., Tang, Y. P., Shrom, D., Jin, J., Kyin, M., Sopher, B., Miller, M. W., Ware, C. B., Martin, G. M., Kim, S. H., Langdon, R. B., Sisodia, S. S., & Tsien, J. Z. (2001). Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron, 32(5), 911–926.

    CAS  PubMed  Google Scholar 

  • Ferrer, I. (2012). Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. Progress in Neurobiology, 97(1), 38–51.

    PubMed  Google Scholar 

  • Fitzsimons, C. P., van Bodegraven, E., Schouten, M., Lardenoije, R., Kompotis, K., Kenis, G., van den Hurk, M., Boks, M. P., Biojone, C., Joca, S., Steinbusch, H. W., Lunnon, K., Mastroeni, D. F., Mill, J., Lucassen, P. J., Coleman, P. D., van den Hove, D. L., & Rutten, B. P. (2014). Epigenetic regulation of adult neural stem cells: Implications for Alzheimer’s disease. Molecular Neurodegeneration, 9(1), 25.

    PubMed Central  PubMed  Google Scholar 

  • Fuster-Matanzo, A., de Barreda, E. G., Dawson, H. N., Vitek, M. P., Avila, J., & Hernández, F. (2009). Function of tau protein in adult newborn neurons. FEBS Letters, 583(18), 3063–3068.

    CAS  PubMed  Google Scholar 

  • Fuster-Matanzo, A., Llorens-Martín, M., Jurado-Arjona, J., Avila, J., & Hernández, F. (2012). Tau protein and adult hippocampal neurogenesis. Frontiers in Neuroscience, 6, 104.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gan, L., Qiao, S., Lan, X., Chi, L., Luo, C., Lien, L., Yan Liu, Q., & Liu, R. (2008). Neurogenic responses to amyloid-beta plaques in the brain of Alzheimer’s disease-like transgenic (pPDGF-APPSw, Ind) mice. Neurobiology of Disease, 29(1), 71–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gheusi, G., Cremer, H., McLean, H., Chazal, G., Vincent, J. D., & Lledo, P. M. (2000). Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proceedings of the National Academy of Sciences of the United States of America, 97, 1823–1828.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosal, K., Stathopoulos, A., & Pimplikar, S. W. (2010). APP intracellular domain impairs adult neurogenesis in transgenic mice by inducing neuroinflammation. PLoS One, 5(7), e11866.

    PubMed Central  PubMed  Google Scholar 

  • Gluckman, P., Klempt, N., Guan, J., Mallard, C., Sirimanne, E., Dragunow, M., Klempt, M., Singh, K., Williams, C., & Nikolics, K. (1992). A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury. Biochemical and Biophysical Research Communications, 182, 593–599.

    CAS  PubMed  Google Scholar 

  • González-Billault, C1, Engelke, M., Jiménez-Mateos, E. M., Wandosell, F., Cáceres, A., Avila, J. (2002). Participation of structural microtubule-associated proteins (MAPs) in the development of neuronal polarity. J Neurosci Res, 67(6), 713–719.

    Google Scholar 

  • Gould, E., Reeves, A. J., Fallah, M., Tanapat, P., Gross, C. G., & Fuchs, E. (1999). Hippocampal neurogenesis in adult Old World primates. Proceedings of the National Academy of Sciences of the United States of America, 96, 5263–5267.

    Google Scholar 

  • Gomez-Nicola, D., Suzzi, S., Vargas-Caballero, M., Fransen, N. L., Al-Malki, H., Cebrian-Silla, A., Garcia-Verdugo, J. M., Riecken, K., Fehse, B., Perry, V. H. (2014). Temporal dynamics of hippocampal neurogenesis in chronic neurodegeneration. Brain, 137(Pt 8):2312–2328.

    PubMed Central  PubMed  Google Scholar 

  • Gouras, G. K., Tampellini, D., Takahashi, R. H., & Capetillo-Zarate, E. (2010). Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathologica, 119(5), 523–541.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hattiangady, B., Rao, M. S., Shetty, G. A., & Shetty, A. K. (2005). Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Experimental Neurology, 195, 353–371.

    CAS  PubMed  Google Scholar 

  • Haughey, N. J., Nath, A., Chan, S. L., Borchard, A. C., Rao, M. S., & Mattson, M. P. (2002). Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. Journal of Neurochemistry, 83, 1509–1524.

    CAS  PubMed  Google Scholar 

  • Heine, V. M., Maslam, S., Joels, M., & Lucassen, P. J. (2004). Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus-pituitary-adrenal axis activation. Neurobiology of Aging, 25, 361–375.

    CAS  PubMed  Google Scholar 

  • Herrup, K., Neve, R., Ackerman, S. L., & Copani, A. (2004). Divide and die: Cell cycle events as triggers of nerve cell death. Journal of Neuroscience, 24, 9232–9239.

    CAS  PubMed  Google Scholar 

  • Ho, N. F., Hooker, J. M., Sahay, A., Holt, D. J., & Roffman, J. L. (2013). In vivo imaging of adult human hippocampal neurogenesis: Progress, pitfalls and promise. Molecular Psychiatry, 18(4), 404–416.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu, Y. S., Xu, P., Pigino, G., Brady, S. T., Larson, J., & Lazarov, O. (2010). Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer’s disease-linked APPswe/PS1DeltaE9 mice. FASEB Journal, 24(6), 1667–1681.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inestrosa, N. C., & Varela-Nallar, L. (2014). Wnt signaling in the nervous system and in Alzheimer’s disease. Journal of Molecular Cell Biology, 6(1), 64–74.

    PubMed  Google Scholar 

  • Jaffard R, Meunier M (1993) Role of the hippocampal formation in learning and memory. Hippocampus 3 Spec No:203–217

    Google Scholar 

  • Jiang, W., Gu, W., Brannstrom, T., Rosqvist, R., & Wester, P. (2001). Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke, 32(5), 1201–1207.

    CAS  PubMed  Google Scholar 

  • Jin, K., Galvan, V., Xie, L., Mao, X. O., Gorostiza, O. F., Bredesen, D. E., & Greenberg, D. A. (2004a). Enhanced neurogenesis in Alzheimer’s disease transgenic (PDGF-APPSw, Ind) mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 13363–13367.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jin, K., Minami, M., Lan, J. Q., Mao, X. O., Batteur, S., Simon, R. P., & Greenberg, D. A. (2001). Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4710–4715.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jin, K., Peel, A. L., Mao, X. O., Xie, L., Cottrell, B. A., Henshall, D. C., & Greenberg, D. A. (2004b). Increased hippocampal neurogenesis in Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 343–347.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jinno, S. (2011). Decline in adult neurogenesis during aging follows a topographic pattern in the mouse hippocampus. The Journal of Comparative Neurology, 519(3), 451–466.

    PubMed  Google Scholar 

  • Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386, 493–495.

    CAS  PubMed  Google Scholar 

  • Kempermann, G., Kuhn, H. G., & Gage, F. H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. Journal of Neuroscience, 18, 3206–3212.

    CAS  PubMed  Google Scholar 

  • Kirsty L. Spalding, Olaf Bergmann, Kanar Alkass, Samuel Bernard, Mehran Salehpour, Hagen B. Huttner, Emil Boström, Isabelle Westerlund, Cé line Vial, Bruce A. Buchholz, Göran Possnert, Deborah C. Mash, Henrik Druid, and Jonas Frisé n. (2013). Dynamics of Hippocampal Neurogenesis in Adult Humans. Cell, 153, 1219–1227.

    Google Scholar 

  • Kiyota, Y., Takami, K., Iwane, M., Shino, A., Miyamoto, M., Tsukuda, R., & Nagaoka, A. (1991). Increase in basic fibroblast growth factor-like immunoreactivity in rat brain after forebrain ischemia. Brain Research, 545, 322–328.

    CAS  PubMed  Google Scholar 

  • Knoth, R., Singec, I., Ditter, M., Pantazis, G., Capetian, P., Meyer, R. P., Horvat, V., Volk, B., & Kempermann, G. (2010). Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One, 5(1), e8809.

    PubMed Central  PubMed  Google Scholar 

  • Koehl, M., & Abrous, D. N. (2011). A new chapter in the field of memory: Adult hippocampal neurogenesis. European Journal of Neuroscience, 33(6), 1101–1114.

    PubMed  Google Scholar 

  • Kondratick, C. M., & Vandré, D. D. (1996). Alzheimer’s disease neurofibrillary tangles contain mitosis-specific phosphoepitopes. Journal of Neurochemistry, 67, 2405–2416.

    CAS  PubMed  Google Scholar 

  • Kornack, D. R., & Rakic, P. (1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proceedings of the National Academy of Sciences of the United States of America, 96, 5768–5773.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kronenberg, G., Bick-Sander, A., Bunk, E., Wolf, C., Ehninger, D., & Kempermann, G. (2006). Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiology of Aging, 27, 1505–1513.

    PubMed  Google Scholar 

  • Krstic, D., & Knuesel, I. (2013). Deciphering the mechanism underlying late-onset alzheimer disease. Nature Reviews Neurology, 9(1), 25–34.

    CAS  PubMed  Google Scholar 

  • Kuhn, H. G., Cooper-Kuhn, C. M., Boekhoorn, K., & Lucassen, P. J. (2007). Changes in neurogenesis in dementia and Alzheimer mouse models: Are they functionally relevant? European Archives of Psychiatry and Clinical Neuroscience, 257(5), 281–289.

    PubMed  Google Scholar 

  • Kuhn, H. G., Dickinson-Anson, H., & Gage, F. H. (1996). Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. Journal of Neuroscience, 16, 2027–2033.

    CAS  PubMed  Google Scholar 

  • Kuhn, H. G., Winkler, J., Kempermann, G., Thal, L. J., & Gage, F. H. (1997). Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. Journal of Neuroscience, 17, 5820–5829.

    CAS  PubMed  Google Scholar 

  • Lambracht-Washington, D., & Rosenberg, R. N. (2013). Anti-amyloid beta to tau - based immunization: Developments in immunotherapy for Alzheimer disease. ImmunoTargets and therapy, 2013(2), 105–114.

    PubMed Central  PubMed  Google Scholar 

  • Laurin, D., Verreault, R., Lindsay, J., MacPherson, K., & Rockwood, K. (2001). Physical activity and risk of cognitive impairment and dementia in elderly persons. Archives of Neurology, 58, 498–504.

    CAS  PubMed  Google Scholar 

  • Lazarov, O., & Marr, R. A. (2010). Neurogenesis and Alzheimer’s disease: At the crossroads. Experimental Neurology, 223(2), 267–281.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lazarov, O., Mattson, M. P., Peterson, D. A., Pimplikar, S. W., & van Praag, H. (2010). When neurogenesis encounters aging and disease. Trends in Neurosciences, 33(12), 569–579.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lazarov, O., Robinson, J., Tang, Y. P., Hairston, I. S., Korade-Mirnics, Z., Lee, V. M., Hersh, L. B., Sapolsky, R. M., Mirnics, K., & Sisodia, S. S. (2005). Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell, 120, 701–713.

    CAS  PubMed  Google Scholar 

  • Lee, S. W., Clemenson, G. D., & Gage, F. H. (2012). New neurons in an aged brain. Behavioural Brain Research, 227(2), 497–507.

    PubMed Central  PubMed  Google Scholar 

  • Lee, J., Duan, W., Long, J. M., Ingram, D. K., & Mattson, M. P. (2000). Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. Journal of Molecular Neuroscience, 15, 99–108.

    CAS  PubMed  Google Scholar 

  • Lemmens, M. A., Sierksma, A. S., Rutten, B. P., Dennissen, F., Steinbusch, H. W., Lucassen, P. J., & Schmitz, C. (2011). Age-related changes of neuron numbers in the frontal cortex of a transgenic mouse model of Alzheimer’s disease. Brain Structure and Function, 216(3), 227–237.

    PubMed Central  PubMed  Google Scholar 

  • Lie, D. C., Colamarino, S. A., Song, H. J., Desire, L., Mira, H., Consiglio, A., Lein, E. S., Jessberger, S., Lansford, H., Dearie, A. R., & Gage, F. H. (2005). Wnt signalling regulates adult hippocampal neurogenesis. Nature, 437, 1370–1375.

    CAS  PubMed  Google Scholar 

  • Lopez-Toledano, M. A., & Shelanski, M. L. (2004). Neurogenic effect of beta-amyloid peptide in the development of neural stem cells. Journal of Neuroscience, 24, 5439–5444.

    CAS  PubMed  Google Scholar 

  • Lucassen, P. J., Meerlo, P., Naylor, A. S., van Dam, A. M., Dayer, A. G., Fuchs, E., Oomen, C. A., & Czéh, B. (2010). Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: Implications for depression and antidepressant action. European Neuropsychopharmacology, 20(1), 1–17.

    CAS  PubMed  Google Scholar 

  • Manganas, L. N., Zhang, X., Li, Y., Hazel, R. D., Smith, S. D., Wagshul, M. E., Henn, F., Benveniste, H., Djuric, P. M., Enikolopov, G., and Maletic-Savatic, M. (2007). Magnetic resonance spec- troscopy identifies neural progenitor cells in the live human brain. Science, 318, 980–985.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marlatt, M. W., Bauer, J., Aronica, E., Van Haastert, E. S., Hoozemans, J. J. M., Joels, M., Lucassen, P. J. (2014). Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition. Neural Plasticity. 2014:693851. doi 10.1155/2014/693851, Epub 2014 Aug 19.

    Google Scholar 

  • Marlatt, M. W., & Lucassen, P. J. (2010). Neurogenesis and Alzheimer’s disease: Biology and pathophysiology in mice and men. Current Alzheimer Research, 7(2), 113–125.

    CAS  PubMed  Google Scholar 

  • Marlatt, M. W., Potter, M. C., Bayer, T. A., van Praag, H., & Lucassen, P. J. (2013). Prolonged running, not fluoxetine treatment, increases neurogenesis, but does not alter neuropathology, in the 3xTg mouse model of Alzheimer’s disease. Current Topics in Behavioral Neurosciences, 15, 313–340.

    PubMed  Google Scholar 

  • Marlatt, M. W., Potter, M. C., Lucassen, P. J., & van Praag, H. (2012). Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6 J mice. Developmental Neurobiology, 72(6), 943–952.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masters, C. L., Cappai, R., Barnham, K. J., & Villemagne, V. L. (2006). Molecular mechanisms for Alzheimer’s disease: Implications for neuroimaging and therapeutics. Journal of Neurochemistry, 97, 1700–1725.

    CAS  PubMed  Google Scholar 

  • Mattson, M. P., Duan, W., Lee, J., & Guo, Z. (2001). Suppression of brain aging and neurodegenerative disorders by dietary restriction and environmental enrichment: Molecular mechanisms. Mechanisms of Ageing and Development, 122, 757–778.

    CAS  PubMed  Google Scholar 

  • Mattson, M. P., Duan, W., & Guo, Z. (2003). Meal size and frequency affect neuronal plasticity and vulnerability to disease: Cellular and molecular mechanisms. Journal of Neurochemistry, 84, 417–431.

    CAS  PubMed  Google Scholar 

  • McShea, A., Harris, P. L., Webster, K. R., Wahl, A. F., & Smith, M. A. (1997). Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. American Journal of Pathology, 150, 1933–1939.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mirochnic, S., Wolf, S., Staufenbiel, M., & Kempermann, G. (2009). Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease. Hippocampus, 19(10), 1008–1018.

    CAS  PubMed  Google Scholar 

  • Mohapel, P., Leanza, G., Kokaia, M., & Lindvall, O. (2005). Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiology of Aging, 26, 939–946.

    CAS  PubMed  Google Scholar 

  • Montaron, M. F., Drapeau, E., Dupret, D., Kitchener, P., Aurousseau, C., Le Moal, M., Piazza, P. V., & Abrous, D. N. (2006). Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiology of Aging, 27, 645–654.

    CAS  PubMed  Google Scholar 

  • Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681–683.

    CAS  PubMed  Google Scholar 

  • Mu, Y., & Gage, F. H. (2011). Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Molecular Neurodegeneration, 6, 85.

    PubMed Central  PubMed  Google Scholar 

  • Musiek, E. S., & Holtzman, D. M. (2012). Origins of Alzheimer’s disease: Reconciling cerebrospinal fluid biomarker and neuropathology data regarding the temporal sequence of amyloid-beta and tau involvement. Current Opinion in Neurology, 25(6), 715–720.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy, Z., Esiri, M. M., & Smith, A. D. (1997). Expression of cell division markers in the hippocampus in Alzheimer’s disease and other neurodegenerative conditions. Acta Neuropathologica (Berl), 93, 294–300.

    CAS  Google Scholar 

  • Nelson, P. T., et al. (2012). Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. Journal of Neuropathology and Experimental Neurology, 71, 362–381.

    PubMed Central  PubMed  Google Scholar 

  • Nichol, K. E., Parachikova, A. I., & Cotman, C. W. (2007). Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behavioural Brain Research, 184(2), 124–132.

    PubMed Central  PubMed  Google Scholar 

  • Nichol, K. E., Poon, W. W., Parachikova, A. I., Cribbs, D. H., Glabe, C. G., & Cotman, C. W. (2008). Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid. Journal of Neuroinflammation, 5, 13.

    PubMed Central  PubMed  Google Scholar 

  • Oomen, C. A., Bekinschtein, P., Kent, B. A., Saksida, L. M., & Bussey, T. J. (2014). Adult hippocampal neurogenesis and its role in cognition. WIREs Cogn Sci. doi 10.1002/wcs.1304.

    Google Scholar 

  • Palop, J. J., & Mucke, L. (2010). Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nature Neuroscience, 13(7), 812–818.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parent, J. M., Yu, T. W., Leibowitz, R. T., Geschwind, D. H., Sloviter, R. S., & Lowenstein, D. H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. Journal of Neuroscience, 17, 3727–3738.

    CAS  PubMed  Google Scholar 

  • Patel, N. V., Gordon, M. N., Connor, K. E., Good, R. A., Engelman, R. W., Mason, J., Morgan, D. G., Morgan, T. E., & Finch, C. E. (2005). Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiology of Aging, 26, 995–1000.

    CAS  PubMed  Google Scholar 

  • Perl, D. P. (2010). Neuropathology of Alzheimer’s disease. Mount Sinai Journal of Medicine, 77(1), 32–42.

    PubMed Central  PubMed  Google Scholar 

  • Perry, E. K., Johnson, M., Ekonomou, A., Perry, R. H., Ballard, C., & Attems, J. (2012). Neurogenic abnormalities in Alzheimer’s disease differ between stages of neurogenesis and are partly related to cholinergic pathology. Neurobiology of Disease, 47(2), 155–162.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plate, K. H., Beck, H., Danner, S., Allegrini, P. R., & Wiessner, C. (1999). Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. Journal of Neuropathology & Experimental Neurology, 58, 654–666.

    CAS  Google Scholar 

  • Pul, R., Dodel, R., & Stangel, M. (2011). Antibody-based therapy in Alzheimer’s disease. Expert Opinion on Biological Therapy, 11(3), 343–357.

    CAS  PubMed  Google Scholar 

  • Rao, M. S., & Shetty, A. K. (2004). Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. European Journal of Neuroscience, 19, 234–246.

    PubMed  Google Scholar 

  • Rodríguez, J. J., Jones, V. C., Tabuchi, M., Allan, S. M., Knight, E. M., LaFerla, F. M., Oddo, S., & Verkhratsky, A. (2008). Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS One, 3(8), e2935.

    PubMed Central  PubMed  Google Scholar 

  • Rodríguez, J. J., Noristani, H. N., Olabarria, M., Fletcher, J., Somerville, T. D., Yeh, C. Y., & Verkhratsky, A. (2011). Voluntary running and environmental enrichment restores impaired hippocampal neurogenesis in a triple transgenic mouse model of Alzheimer’s disease. Current Alzheimer Research, 8(7), 707–717.

    PubMed  Google Scholar 

  • Rodríguez, J. J., & Verkhratsky, A. (2011). Neurogenesis in Alzheimer’s disease. Journal of Anatomy, 219(1), 78–89.

    PubMed Central  PubMed  Google Scholar 

  • Rosenzweig, M. R. (1966). Environmental complexity, cerebral change, and behavior. American Psychologist, 21, 321–332.

    CAS  PubMed  Google Scholar 

  • Sahay, A., Scobie, K. N., Hill, A. S., O’Carroll, C. M., Kheirbek, M. A., Burghardt, N. S., Fenton, A. A., Dranovsky, A., & Hen, R. (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472(7344), 466–470.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scarmeas, N., Stern, Y., Tang, M. X., Mayeux, R., & Luchsinger, J. A. (2006). Mediterranean diet and risk for Alzheimer’s disease. Annals of Neurology, 59, 912–921.

    PubMed Central  PubMed  Google Scholar 

  • Schänzer, A., Wachs, F. P., Wilhelm, D., Acker, T., Cooper-Kuhn, C. M., Beck, H., Winkler, J., Aigner, L., Plate, K. H., & Kuhn, H. G. (2004). Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathology, 14, 237–248.

    PubMed  Google Scholar 

  • Schmidt-Kastner, R., Truettner, J., Lin, B., Zhao, W., Saul, I., Busto, R., & Ginsberg, M. D. (2001). Transient changes of brain-derived neurotrophic factor (BDNF) mRNA expression in hippocampus during moderate ischemia induced by chronic bilateral common carotid artery occlusions in the rat. Brain Research. Molecular Brain Research, 92, 157–166.

    CAS  PubMed  Google Scholar 

  • Schouten, M., Buijink, M. R., Lucassen, P. J., & Fitzsimons, C. P. (2012). New neurons in aging brains: Molecular control by small non-coding RNAs. Frontiers in Neuroscience, 6, 25.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seelaar, H., Rohrer, J. D., Pijnenburg, Y. A., Fox, N. C., & van Swieten, J. C. (2011). Clinical, genetic and pathological heterogeneity of frontotemporal dementia: A review. Journal of Neurology, Neurosurgery & Psychiatry, 82(5), 476–486.

    Google Scholar 

  • Sennvik, K., Boekhoorn, K., Lasrado, R., Terwel, D., Verhaeghe, S., Korr, H., Schmitz, C., Tomiyama, T., Mori, H., Krugers, H., Joels, M., Ramakers, G. J., Lucassen, P. J., & Van Leuven, F. (2007). Tau-4R suppresses proliferation and promotes neuronal differentiation in the hippocampus of tau knockin/knockout mice. FASEB Journal, 21(9), 2149–2161.

    CAS  PubMed  Google Scholar 

  • Shetty, A. K., Hattiangady, B., & Shetty, G. A. (2005). Stem/progenitor cell proliferation factors FGF-2, IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: Role of astrocytes. Glia, 51, 173–186.

    PubMed  Google Scholar 

  • Shors, T. J., Townsend, D. A., Zhao, M., Kozorovitskiy, Y., & Gould, E. (2002). Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 12(5), 578–584.

    PubMed Central  PubMed  Google Scholar 

  • Sitzer, D. I., Twamley, E. W., & Jeste, D. V. (2006). Cognitive training in Alzheimer’s disease: A meta-analysis of the literature. Acta Psychiatrica Scandinavica, 114, 75–90.

    CAS  PubMed  Google Scholar 

  • Smith, T. W., & Lippa, C. F. (1995). Ki-67 immunoreactivity in Alzheimer’s disease and other neurodegenerative disorders. Journal of Neuropathology & Experimental Neurology, 54, 297–303.

    CAS  Google Scholar 

  • Spalding, K. L., Bhardwaj, R. D., Buchholz, B. A., Druid, H., & Frisén, J. (2005). Retrospective birth dating of cells in humans. Cell, 122(1),133–143.

    CAS  PubMed  Google Scholar 

  • Swaab, D. F., & Uylings, H. B. M. (1988). Potentials and pitfalls in the use of human brain material in molecular neuroanatomy. In F. W. van Leeuwen, C. W. Pool, & O. Pach (Eds.), Molecular neuroanatomy (pp. 403–416). Amsterdam: Elsevier.

    Google Scholar 

  • Taupin, P. (2009). Adult neurogenesis, neural stem cells and Alzheimer’s disease: Developments, limitations, problems and promises. Current Alzheimer Research, 6(6), 461–470.

    CAS  PubMed  Google Scholar 

  • Thompson, A., Boekhoorn, K., Van Dam, A. M., & Lucassen, P. J. (2008). Changes in adult neurogenesis in neurodegenerative diseases: Cause or consequence? Genes, Brain, and Behavior, 7(Suppl 1), 28–42.

    PubMed  Google Scholar 

  • van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2, 266–270.

    PubMed  Google Scholar 

  • van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030–1034.

    PubMed  Google Scholar 

  • van Swieten, J. C., & Heutink, P. (2008). Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia. Lancet Neurology, 7, 965–974.

    Google Scholar 

  • Van Tijn, P., Kamphuis, W., Marlatt, M. W., Hol, E. M., & Lucassen, P. J. (2011). Presenilin mouse and zebrafish models for dementia: Focus on neurogenesis. Progress in Neurobiology, 93(2), 149–164.

    PubMed  Google Scholar 

  • Verwer, R. W., Sluiter, A. A., Balesar, R. A., Baayen, J. C., Noske, D. P., Dirven, C. M., Wouda, J., van Dam, A. M., Lucassen, P. J., & Swaab, D. F. (2007). Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin. Brain, 130(Pt 12), 3321–3335.

    CAS  PubMed  Google Scholar 

  • Vincent, I., Jicha, G., Rosado, M., & Dickson, D. W. (1997). Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. Journal of Neuroscience, 17, 3588–3598.

    CAS  PubMed  Google Scholar 

  • Wang, R., Dineley, K. T., Sweatt, J. D., & Zheng, H. (2004). Presenilin 1 familial Alzheimer’s disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience, 126, 305–312.

    CAS  PubMed  Google Scholar 

  • Webster, S. J., Bachstetter, A. D., Nelson, P. T., Schmitt, F. A., & Van Eldik, L. J. (2014). Using mice to model Alzheimer’s dementia: An overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Frontiers in Genetics, 5, 88. doi:10.3389/fgene.2014.00088. eCollection 2014.

    PubMed Central  PubMed  Google Scholar 

  • Wen, P. H., Hof, P. R., Chen, X., Gluck, K., Austin, G., Younkin, S. G., Younkin, L. H., DeGasperi, R., Gama Sosa, M. A., Robakis, N. K., Haroutunian, V., & Elder, G. A. (2004). The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Experimental Neurology, 188, 224–237.

    CAS  PubMed  Google Scholar 

  • Wen, P. H., Shao, X., Shao, Z., Hof, P. R., Wisniewski, T., Kelley, K., Friedrich, V. L., Jr., Ho, L., Pasinetti, G. M., Shioi, J., Robakis, N. K., & Elder, G. A. (2002). Overexpression of wild type but not an FAD mutant presenilin-1 promotes neurogenesis in the hippocampus of adult mice. Neurobiology of Disease, 10, 8–19.

    CAS  PubMed  Google Scholar 

  • Wines-Samuelson, M., & Shen, J. (2005). Presenilins in the developing, adult, and aging cerebral cortex. The Neuroscientist, 11, 441–451.

    CAS  PubMed  Google Scholar 

  • Winner, B., Kohl, Z., & Gage, F. H. (2011). Neurodegenerative disease and adult neurogenesis. European Journal of Neuroscience, 33(6), 1139–1151.

    PubMed  Google Scholar 

  • Wisniewski, T., & Goñi, F. (2014). Immunotherapy for Alzheimer’s disease. Biochemical Pharmacology, 88(4), 499–507.

    CAS  PubMed  Google Scholar 

  • Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., & Kempermann, G. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biological Psychiatry, 60, 1314–1323.

    CAS  PubMed  Google Scholar 

  • Yan, X. X., Cai, Y., Shelton, J., Deng, S. H., Luo, X. G., Oddo, S., Laferla, F. M., Cai, H., Rose, G. M., & Patrylo, P. R. (2012). Chronic temporal lobe epilepsy is associated with enhanced Alzheimer-like neuropathology in 3 × Tg-AD mice. PLoS One, 7(11), e48782.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang, Y., Mufson, E. J., & Herrup, K. (2003). Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. Journal of Neuroscience, 23, 2557–2563.

    CAS  PubMed  Google Scholar 

  • Yang, Y., Varvel, N. H., Lamb, B. T., & Herrup, K. (2006). Ectopic cell cycle events link human Alzheimer’s disease and amyloid precursor protein transgenic mouse models. Journal of Neuroscience, 26(3), 775–784.

    CAS  PubMed  Google Scholar 

  • Yasuoka, K., Hirata, K., Kuraoka, A., He, J. W., & Kawabuchi, M. (2004). Expression of amyloid precursor protein-like molecule in astroglial cells of the subventricular zone and rostral migratory stream of the adult rat forebrain. Journal of Anatomy, 205, 135–146.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu, Y., He, J., Zhang, Y., Luo, H., Zhu, S., Yang, Y., Zhao, T., Wu, J., Huang, Y., Kong, J., Tan, Q., & Li, X. M. (2009). Increased hippocampal neurogenesis in the progressive stage of Alzheimer’s disease phenotype in an APP/PS1 double transgenic mouse model. Hippocampus, 19(12), 1247–1253.

    PubMed  Google Scholar 

  • Zhang, C., McNeil, E., Dressler, L., & Siman, R. (2007). Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer’s disease. Experimental Neurology, 204(1), 77–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao, C., Deng, W., & Gage, F. H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4), 645–660.

    CAS  PubMed  Google Scholar 

  • Zigova, T., Pencea, V., Wiegand, S. J., & Luskin, M. B. (1998). Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Molecular and Cellular Neurosciences, 11, 234–245.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PJL, AK, and LH are supported by Alzheimer Nederland, AK is supported by an NWO Meervoud grant, and PJL is supported by de HersenStichting Nederland, NWO, and ISAO. HK, LH and AK are supported by ISAO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Lucassen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lucassen, P.J. et al. (2015). Stem Cells and Neurogenesis in Relation to Dementia and Alzheimer’s Disease Mouse Models. In: Kuhn, H., Eisch, A. (eds) Neural Stem Cells in Development, Adulthood and Disease. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1908-6_4

Download citation

Publish with us

Policies and ethics