Context-Awareness in Multi-agent Systems for Ambient Intelligence

  • Andrei Olaru


There is a large body of research that lies at the intersection of the domains of context-awareness, multi-agent systems (MAS) and Ambient Intelligence (AmI)/Ubiquitous Computing (UbiComp). This is because, while multi-agent systems are an appropriate architecture for AmI implementations, one essential requirement for AmI is to be aware of the user’s context and to act accordingly. In order to implement context-awareness in a MAS for AmI applications, one must on the one hand choose an appropriate representation for context, that is suitable for agents of all sizes and functions, and, on the other hand, create an agent-based architecture that facilitates communication between agents that share context. This chapter presents a model, mechanisms and methods for integrating context-awareness in multi-agent systems for AmI. The model is based on experience with several implementations of MAS dealing with various aspects of context-awareness.



The work has been funded by the Sectoral Operational Programme Human Resources Development 2007–2013 of the Ministry of European Funds through the Financial Agreement POSDRU/159/1.5/S/134398.


  1. Augusto, J.C., McCullagh, P.J.: Ambient intelligence: Concepts and applications. Comput. Sci. Inf. Syst. (ComSIS) 4(1), 1–27 (2007)CrossRefGoogle Scholar
  2. Baljak, V., Benea, M.T., El Fallah Seghrouchni, A., Herpson, C., Honiden, S., Nguyen, T.T.N., Olaru, A., Shimizu, R., Tei, K., Toriumi, S.: S-CLAIM: An agent-based programming language for AmI, a smart-room case study. In: Proceedings of ANT 2012, The 3rd International Conference on Ambient Systems, Networks and Technologies, 27–29 August, Niagara Falls, Ontario, Canada, Procedia Computer Science, vol. 10, pp. 30–37. Elsevier (2012). doi: 10.1016/j.procs.2012.06.008.
  3. Brézillon, J., Brézillon, P.: Context modeling: Context as a dressing of a focus. In: Kokinov, B., Richardson D.C., Roth-Berghofer, Thomas, R., Vieu, L. (eds) Modeling and Using Context (Lecture Notes in Computer Science), pp. 136–149. Springer, Berlin (2007). doi: 10.1007/978-3-540-74255-5_11Google Scholar
  4. Cabri, G., Ferrari, L., Leonardi, L., Zambonelli, F.: The LAICA project: Supporting ambient intelligence via agents and ad-hoc middleware. Proceedings of WETICE 2005, 14th IEEE International Workshops on Enabling Technologies, 13–15 June 2005, Linköping, Sweden pp. 39–46 (2005)Google Scholar
  5. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Technical Report TR2000-381, Dartmouth College (2000)Google Scholar
  6. Cook, D.J., Krishnan, N.C., Rashidi, P.: Activity discovery and activity recognition: A new partnership. IEEE Trans. Cybern. 43(3), 820–828 (2013)CrossRefGoogle Scholar
  7. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.: Scenarios for ambient intelligence in 2010. Technical Report, Office for Official Publications of the European Communities (2001)Google Scholar
  8. El Fallah Seghrouchni, A.: Intelligence ambiante, les defis scientifiques. Presentation, Colloque Intelligence Ambiante, Forum Atena (2008)Google Scholar
  9. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1999). isbn = 0201360489Google Scholar
  10. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications: Models and approach. Pervasive Mobile Comput. 2(1), 37–64 (2006)CrossRefGoogle Scholar
  11. Lech, T.C., Wienhofen, L.W.M.: AmbieAgents: a scalable infrastructure for mobile and context-aware information services. Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005), 25–29 July 2005, Utrecht, The Netherlands, pp. 625–631 (2005)Google Scholar
  12. Olaru, A.: Context matching for ambient intelligence applications. In: Björner, N., Negru, V., Ida, T., Jebelean, T., Petcu, D., Watt, S., Zaharie, D. (eds.) Proceedings of SYNASC 2013, 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 23–26 September, Timisoara, Romania, pp. 265–272. IEEE CPS (2013). doi: 10.1109/SYNASC.2013.42Google Scholar
  13. Olaru, A., Nguyen, T.T.N., Benea, M.T., El Fallah Seghrouchni, A.: Ao dai: Agent-oriented design for ambient intelligence. Sixth joint NII-LIP6 WorkShop on Multi-Agent and Distributed Systems, Paris, France (2011).
  14. Olaru, A., Florea, A.M., El Fallah Seghrouchni, A.: A context-aware multi-agent system as a middleware for ambient intelligence. Mobile Netw. Appl. 18(3), 429–443 (2013). doi: 10.1007/s11036-012-0408-9. CrossRefGoogle Scholar
  15. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: A survey. IEEE Commun. Surv. Tutorials 16(1), 414–454 (2013)Google Scholar
  16. Rogers, A., Corkill, D., Jennings, N.: Agent technologies for sensor networks. IEEE Intell. Syst. 24(2), 13–17 (2009)CrossRefGoogle Scholar
  17. Sowa, J.: Conceptual graphs. Found. Artif. Intell. 3, 213–237 (2008)CrossRefGoogle Scholar
  18. Tapia, D., Abraham, A., Corchado, J., Alonso, R.: Agents and ambient intelligence: Case studies. J. Ambient Intell. Humanized Comput. 1(2), 85–93 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computers, Faculty of Automatic Control and ComputersUniversity “Politehnica” of BucharestBucharestRomania

Personalised recommendations