Skip to main content

The Influence of Pain on Reward Processing: Current Literature and Prospects

  • Chapter
  • First Online:
Neurobiological Studies of Addiction in Chronic Pain States

Abstract

Both short- and long-term pain influence reward processing. Albeit the literature is still scarce, a picture is emerging in which pain increases the motivational drive to obtain reward, whereas the pleasure that is felt when a reward is obtained seems to be unchanged or even decreased. In addition, brain systems that are important for pain modulation as well as reward processing are altered by pain, possibly leading to less efficient endogenous pain control and contributing to emotional sequelae of chronic pain. Altered reward processing, including increased motivational drive and urge, and increased pain sensitivity might contribute to problematic drug behaviors in some chronic pain patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leknes S, Tracey I. A common neurobiology for pain and pleasure. Nat Rev Neurosci. 2008;9:314–20.

    CAS  PubMed  Google Scholar 

  2. Fields HL. A motivation-decision model of pain: the role of opioids. In: Flor H, Kalso E, Dostrovsky JO, editors. Proceedings of the 11th world congress on pain. Seattle: IASP Press; 2006. p. 449–59.

    Google Scholar 

  3. Pecina S, Berridge KC. Opioid site in nucleus accumbens shell mediates eating and hedonic ‘liking’ for food: map based on microinjection Fos plumes. Brain Res. 2000;863:71–86.

    CAS  PubMed  Google Scholar 

  4. Kelley AE, Bakshi VP, Haber SN, Steininger TL, Will MJ, Zhang M. Opioid modulation of taste hedonics within the ventral striatum. Physiol Behav. 2002;76:365–77.

    CAS  PubMed  Google Scholar 

  5. Pecina S, Berridge KC. Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci. 2005;25:11777–86.

    CAS  PubMed  Google Scholar 

  6. Pecina S, Smith KS, Berridge KC. Hedonic hot spots in the brain. Neuroscientist. 2006;12:500–11.

    PubMed  Google Scholar 

  7. Smith KS, Berridge KC. Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci. 2007;27:1594–605.

    CAS  PubMed  Google Scholar 

  8. Mahler SV, Smith KS, Berridge KC. Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacology. 2007;32:2267–78.

    CAS  PubMed  Google Scholar 

  9. Jarrett MM, Scantlebury J, Parker LA. Effect of Delta(9)-tetrahydrocannabinol on quinine palatability and AM251 on sucrose and quinine palatability using the taste reactivity test. Physiol Behav. 2007;90:425–30.

    CAS  PubMed  Google Scholar 

  10. Smith KS, Tindell AJ, Aldridge JW, Berridge KC. Ventral pallidum roles in reward and motivation. Behav Brain Res. 2009;196:155–67.

    PubMed Central  PubMed  Google Scholar 

  11. Smith KS, Berridge KC. The ventral pallidum and hedonic reward: neurochemical maps of sucrose “liking” and food intake. J Neurosci. 2005;25:8637–49.

    CAS  PubMed  Google Scholar 

  12. Beaver JD, Lawrence AD, Van Ditzhuijzen J, Davis MH, Woods A, Calder AJ. Individual differences in reward drive predict neural responses to images of food. J Neurosci. 2006;26:5160–6.

    CAS  PubMed  Google Scholar 

  13. Pessiglione M, Schmidt L, Draganski B, Kalisch R, Lau H, Dolan RJ, Frith CD. How the brain translates money into force: a neuroimaging study of subliminal motivation. Science. 2007;316:904–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Childress AR, Ehrman RN, Wang Z, Li Y, Sciortino N, Hakun J, Jens W, Suh J, Listerud J, Marquez K, Franklin T, Langleben D, Detre J, O’Brien CP. Prelude to passion: limbic activation by “unseen” drug and sexual cues. PLoS One. 2008;3:e1506.

    PubMed Central  PubMed  Google Scholar 

  15. Bryant CD, Zaki PA, Carroll FI, Evans CJ. Opioids and addiction: emerging pharmaceutical strategies for reducing reward and opponent processes. Clin Neurosci Res. 2005;5:103–15.

    CAS  Google Scholar 

  16. Zellner MR, Watt DF, Solms M, Panksepp J. Affective neuroscientific and neuropsychoanalytic approaches to two intractable psychiatric problems: why depression feels so bad and what addicts really want. Neurosci Biobehav Rev. 2011;35:2000–8.

    PubMed  Google Scholar 

  17. Venugopalan VV, Casey KF, O’Hara C, O’Loughlin J, Benkelfat C, Fellows LK, Leyton M. Acute phenylalanine/tyrosine depletion reduces motivation to smoke cigarettes across stages of addiction. Neuropsychopharmacology. 2011;36:2469–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Winkielman P, Berridge KC, Wilbarger JL. Unconscious affective reactions to masked happy versus angry faces influence consumption behavior and judgments of value. Pers Soc Psychol Bull. 2005;31:121–35.

    PubMed  Google Scholar 

  19. Berridge KC, Robinson TE. Parsing reward. Trends Neurosci. 2003;26:507–13.

    CAS  PubMed  Google Scholar 

  20. Berridge KC. Pleasures of the brain. Brain Cogn. 2003;52:106–28.

    PubMed  Google Scholar 

  21. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28:309–69.

    CAS  PubMed  Google Scholar 

  22. Robinson TE, Berridge KC. Addiction. Annu Rev Psychol. 2003;54:25–53.

    PubMed  Google Scholar 

  23. Wyvell CL, Berridge KC. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J Neurosci. 2000;20:8122–30.

    CAS  PubMed  Google Scholar 

  24. Wyvell CL, Berridge KC. Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J Neurosci. 2001;21:7831–40.

    CAS  PubMed  Google Scholar 

  25. Avila C, Parcet MA, Barros-Loscertales A. A cognitive neuroscience approach to individual differences in sensitivity to reward. Neurotox Res. 2008;14:191–203.

    CAS  PubMed  Google Scholar 

  26. Gray JA. The psychophysiological basis of introversion-extraversion. Behav Res Ther. 1970;8:249–66.

    CAS  PubMed  Google Scholar 

  27. Gray JA, McNaughton N. The neuropsychology of anxiety: an enquiry in to the functions of the septo-hippocampal system. Oxford: Oxford University; 2000.

    Google Scholar 

  28. van der Linden D, Taris TW, Beckers DGJ, Kindt KB. Reinforcement sensitivity theory and occupational health: BAS and BIS on the job. Pers Individ Dif. 2007;42:1127–38.

    Google Scholar 

  29. Smillie LD, Pickering AD, Jackson CJ. The new reinforcement sensitivity theory: implications for personality measurement. Pers Soc Psychol Rev. 2006;10:320–35.

    PubMed  Google Scholar 

  30. Smillie LD, Dalgleish LI, Jackson CJ. Distinguishing between learning and motivation in behavioral tests of the reinforcement sensitivity theory of personality. Pers Soc Psychol Bull. 2007;33:476–89.

    PubMed  Google Scholar 

  31. Carver CS, White TL. Behavioral inhibition, behavioral activation, and effective responses to impending reward and punishment—the BIS BAS Scales. J Pers Soc Psychol. 1994;67:319–33.

    Google Scholar 

  32. Franken IHA. Behavioral approach system (BAS) sensitivity predicts alcohol craving. Pers Individ Dif. 2002;32:349–55.

    Google Scholar 

  33. Kambouropoulos N, Staiger PK. Reactivity to alcohol-related cues: relationship among cue type, motivational processes, and personality. Psychol Addict Behav. 2004;18:275–83.

    PubMed  Google Scholar 

  34. Booth C, Hasking P. Social anxiety and alcohol consumption: the role of alcohol expectancies and reward sensitivity. Addict Behav. 2009;34:730–6.

    PubMed  Google Scholar 

  35. Franken IHA, Muris P, Georgieva I. Gray’s model of personality and addiction. Addict Behav. 2006;31:399–403.

    PubMed  Google Scholar 

  36. Iacono WG, Malone SM, McGue M. Behavioral disinhibition and the development of early-onset addiction: common and specific influences. Annu Rev Clin Psychol. 2008;4:325–48.

    PubMed  Google Scholar 

  37. Becker S, Gandhi W, Schweinhardt P. Cerebral interactions of pain and reward and their relevance for chronic pain. Neurosci Lett. 2012;520:182–7.

    CAS  PubMed  Google Scholar 

  38. Knutson B, Fong GW, Adams CM, Varner JL, Hommer D. Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport. 2001;12:3683–7.

    CAS  PubMed  Google Scholar 

  39. Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron. 2001;30:619–39.

    CAS  PubMed  Google Scholar 

  40. Small DM, Gregory MD, Mak YE, Gitelman D, Mesulam MM, Parrish T. Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron. 2003;39:701–11.

    CAS  PubMed  Google Scholar 

  41. Rolls ET, O’Doherty J, Kringelbach ML, Francis S, Bowtell R, McGlone F. Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb Cortex. 2003;13:308–17.

    CAS  PubMed  Google Scholar 

  42. O’Doherty J, Winston J, Critchley H, Perrett D, Burt DM, Dolan RJ. Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia. 2003;41:147–55.

    PubMed  Google Scholar 

  43. Gottfried JA, O’Doherty J, Dolan RJ. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science. 2003;301:1104–7.

    CAS  PubMed  Google Scholar 

  44. Schoenbaum G, Chiba AA, Gallagher M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat Neurosci. 1998;1:155–9.

    CAS  PubMed  Google Scholar 

  45. O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ. Neural responses during anticipation of a primary taste reward. Neuron. 2002;33:815–26.

    PubMed  Google Scholar 

  46. Hampton AN, Bossaerts P, O’Doherty JP. The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans. J Neurosci. 2006;26: 8360–7.

    CAS  PubMed  Google Scholar 

  47. O’Doherty JP. Lights, camembert, action! The role of human orbitofrontal cortex in encoding stimuli, rewards, and choices. Ann N Y Acad Sci. 2007;1121:254–72.

    PubMed  Google Scholar 

  48. Petrovic P, Petersson KM, Ghatan PH, Stone-Elander S, Ingvar M. Pain-related cerebral activation is altered by a distracting cognitive task. Pain. 2000;85:19–30.

    CAS  PubMed  Google Scholar 

  49. Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, Erhard P, Tolle TR. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain—an fMRI analysis. Pain. 2004;109:399–408.

    PubMed  Google Scholar 

  50. Bantick SJ, Wise RG, Ploghaus A, Clare S, Smith SM, Tracey I. Imaging how attention modulates pain in humans using functional MRI. Brain. 2002;125:310–9.

    PubMed  Google Scholar 

  51. Villemure C, Bushnell MC. Mood influences supraspinal pain processing separately from attention. J Neurosci. 2009;29:705–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Roy M, Piche M, Chen JI, Peretz I, Rainville P. Cerebral and spinal modulation of pain by emotions. Proc Natl Acad Sci U S A. 2009;106:20900–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Contreras-Vidal JL, Schultz W. A predictive reinforcement model of dopamine neurons for learning approach behavior. J Comput Neurosci. 1999;6:191–214.

    CAS  PubMed  Google Scholar 

  54. Pagnoni G, Zink CF, Montague PR, Berns GS. Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci. 2002;5:97–8.

    CAS  PubMed  Google Scholar 

  55. McClure SM, Berns GS, Montague PR. Temporal prediction errors in a passive learning task activate human striatum. Neuron. 2003;38:339–46.

    CAS  PubMed  Google Scholar 

  56. Schultz W. Behavioral dopamine signals. Trends Neurosci. 2007;30:203–10.

    CAS  PubMed  Google Scholar 

  57. Delgado MR. Reward-related responses in the human striatum. Ann N Y Acad Sci. 2007;1104:70–88.

    PubMed  Google Scholar 

  58. Borsook D, Upadhyay J, Chudler EH, Becerra L. A key role of the basal ganglia in pain and analgesia—insights gained through human functional imaging. Mol Pain. 2010;6:27.

    PubMed Central  PubMed  Google Scholar 

  59. Gear RW, Aley KO, Levine JD. Pain-induced analgesia mediated by mesolimbic reward circuits. J Neurosci. 1999;19:7175–81.

    CAS  PubMed  Google Scholar 

  60. Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta J-K. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch Gen Psychiatry. 2008;65:220–31.

    PubMed  Google Scholar 

  61. Fields HL, Basbaum AI, Heinricher MM. Central nervous system mechanisms of pain modulation. In: McMahon SB, Koltzenburg M, editors. Textbook of pain churchill. New York: Elsevier; 2006. p. 125–42.

    Google Scholar 

  62. Williams DJ, Crossman AR, Slater P. The efferent projections of the nucleus accumbens in the rat. Brain Res. 1977;130:217–27.

    CAS  PubMed  Google Scholar 

  63. Groenewegen HJ, Russchen FT. Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic, and mesencephalic structures: a tracing and immunohistochemical study in the cat. J Comp Neurol. 1984;223:347–67.

    CAS  PubMed  Google Scholar 

  64. Cooper JC, Knutson B. Valence and salience contribute to nucleus accumbens activation. Neuroimage. 2008;39:538–47.

    PubMed Central  PubMed  Google Scholar 

  65. Zink CF, Pagnoni G, Martin-Skurski ME, Chappelow JC, Berns GS. Human striatal responses to monetary reward depend on saliency. Neuron. 2004;42:509–17.

    CAS  PubMed  Google Scholar 

  66. Yin HH, Zhuang X, Balleine BW. Instrumental learning in hyperdopaminergic mice. Neurobiol Learn Mem. 2006;85:283–8.

    CAS  PubMed  Google Scholar 

  67. Pecina S, Cagniard B, Berridge KC, Aldridge JW, Zhuang XX. Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci. 2003;23:9395–402.

    CAS  PubMed  Google Scholar 

  68. Cagniard B, Balsam PD, Brunner D, Zhuang X. Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology. 2005;31:1362–70.

    PubMed  Google Scholar 

  69. Smith KS, Berridge KC, Aldridge JW. Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci. 2011;108:E255–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Berridge KC. The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl). 2007;191:391–431.

    CAS  Google Scholar 

  71. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.

    CAS  PubMed  Google Scholar 

  72. Potvin S, Grignon S, Marchand S. Human evidence of a supra-spinal modulating role of dopamine on pain perception. Synapse. 2009;63:390–402.

    CAS  PubMed  Google Scholar 

  73. Leknes S, Brooks JC, Wiech K, Tracey I. Pain relief as an opponent process: a psychophysical investigation. Eur J Neurosci. 2008;28:794–801.

    PubMed  Google Scholar 

  74. Wood PB. Mesolimbic dopaminergic mechanisms and pain control. Pain. 2006;120:230–4.

    CAS  PubMed  Google Scholar 

  75. Scott DJ, Heitzeg MM, Koeppe RA, Stohler CS, Zubieta JK. Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J Neurosci. 2006;26:10789–95.

    CAS  PubMed  Google Scholar 

  76. Zubieta JK, Smith YR, Bueller JA, Xu Y, Kilbourn MR, Jewett DM, Meyer CR, Koeppe RA, Stohler CS. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science. 2001;293:311–5.

    CAS  PubMed  Google Scholar 

  77. Zubieta JK, Smith YR, Bueller JA, Xu Y, Kilbourn MR, Jewett DM, Meyer CR, Koeppe RA, Stohler CS. mu-opioid receptor-mediated antinociceptive responses differ in men and women. J Neurosci. 2002;22:5100–7.

    CAS  PubMed  Google Scholar 

  78. Kalivas PW, Abhold R. Enkephalin release into the ventral tegmental area in response to stress—modulation of mesocorticolimbic dopamine. Brain Res. 1987;414:339–48.

    CAS  PubMed  Google Scholar 

  79. Bannon MJ, Elliott PJ, Alpert JE, Goedert M, Iversen SD, Iversen LL. Role of endogenous substance-P in stress-induced activation of mesocortical dopamine neurons. Nature. 1983;306:791–2.

    CAS  PubMed  Google Scholar 

  80. Elliott PJ, Alpert JE, Bannon MJ, Iversen SD. Selective activation of mesolimbic and mesocortical dopamine metabolism in rat brain by infusion of a stable substance P analogue into the ventral tegmental area. Brain Res. 1986;363:145–7.

    CAS  PubMed  Google Scholar 

  81. Wood PB, Schweinhardt P, Jaeger E, Dagher A, Hakyemez H, Rabiner EA, Bushnell MC, Chizh BA. Fibromyalgia patients show an abnormal dopamine response to pain. Eur J Neurosci. 2007;25:3576–82.

    PubMed  Google Scholar 

  82. Altier N, Stewart J. The role of dopamine in the nucleus accumbens in analgesia. Life Sci. 1999;65:2269–87.

    CAS  PubMed  Google Scholar 

  83. Dennis SG, Melzack R. Effects of cholinergic and dopaminergic agents on pain and morphine analgesia measured by three pain tests. Exp Neurol. 1983;81:167–76.

    CAS  PubMed  Google Scholar 

  84. Taylor BK, Joshi C, Uppal H. Stimulation of dopamine D2 receptors in the nucleus accumbens inhibits inflammatory pain. Brain Res. 2003;987:135–43.

    CAS  PubMed  Google Scholar 

  85. Saade NE, Atweh SF, Bahuth NB, Jabbur SJ. Augmentation of nociceptive reflexes and chronic deafferentation pain by chemical lesions of either dopaminergic terminals or midbrain dopaminergic neurons. Brain Res. 1997;751:1–12.

    CAS  PubMed  Google Scholar 

  86. Budai D, Fields HL. Endogenous opioid peptides acting at mu-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons. J Neurophysiol. 1998;79:677–87.

    CAS  PubMed  Google Scholar 

  87. Talmi D, Dayan P, Kiebel SJ, Frith CD, Dolan RJ. How humans integrate the prospects of pain and reward during choice. J Neurosci. 2009;29:14617–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Gandhi W, Becker S, Schweinhardt P. Pain increases motivational drive to obtain reward, but does not affect associated hedonic responses: a behavioural study in healthy volunteers. Eur J Pain. 2013;17(7):1093–103.

    CAS  PubMed  Google Scholar 

  89. Low LA, Fitzgerald M. Acute pain and a motivational pathway in adult rats: influence of early life pain experience. PLoS One. 2012;7:e34316.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Raghunathan R, Pham MT. All negative moods are not equal: motivational influences of anxiety and sadness on decision making. Organ Behav Hum Decis Process. 1999;79:56–77.

    PubMed  Google Scholar 

  91. Merskey H, Bogduk N. Classification of chronic pain. 2nd ed. Seattle: IASP Press; 1994.

    Google Scholar 

  92. Rao H, Korczykowski M, Pluta J, Hoang A, Detre JA. Neural correlates of voluntary and involuntary risk taking in the human brain: an fMRI Study of the Balloon Analog Risk Task (BART). Neuroimage. 2008;42:902–10.

    PubMed  Google Scholar 

  93. Lejuez CW, Read JP, Kahler CW, Richards JB, Ramsey SE, Stuart GL, Strong DR, Brown RA. Evaluation of a behavioral measure of risk taking: the Balloon Analogue Risk Task (BART). J Exp Psychol Appl. 2002;8:75–84.

    CAS  PubMed  Google Scholar 

  94. Da Silva Torres ILD, Cucco SNS, Bassani M, Duarte MS, Silveira PP, Vasconcellos AP, Tabajara AS, Dantas G, Fontella FU, Dalmaz C, Ferreira MBC. Long-lasting delayed hyperalgesia after chronic restraint stress in rats—effect of morphine administration. Neurosci Res. 2003;45:277–83.

    PubMed  Google Scholar 

  95. Gambarana C, Masi F, Tagliamonte A, Scheggi S, Ghiglieri O, De Montis MG. A chronic stress that impairs reactivity in rats also decreases dopaminergic transmission in the nucleus accumbens: a microdialysis study. J Neurochem. 1999;72:2039–46.

    CAS  PubMed  Google Scholar 

  96. Puglisi-Allegra S, Imperato A, Angelucci L, Cabib S. Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Res. 1991;554:217–22.

    CAS  PubMed  Google Scholar 

  97. Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience. 1991;41:1–24.

    CAS  PubMed  Google Scholar 

  98. Floresco SB, West AR, Ash B, Moore H, Grace AA. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci. 2003;6:968–73.

    CAS  PubMed  Google Scholar 

  99. Hagelberg N, Forssell H, Aalto S, Rinne JO, Scheinin H, Taiminen T, Nagren K, Eskola O, Jaaskelainen SK. Altered dopamine D2 receptor binding in atypical facial pain. Pain. 2003;106:43–8.

    CAS  PubMed  Google Scholar 

  100. Hagelberg N, Forssell H, Rinne JO, Scheinin H, Taiminen T, Aalto S, Luutonen S, Nagren K, Jaaskelainen S. Striatal dopamine D1 and D2 receptors in burning mouth syndrome. Pain. 2003;101:149–54.

    CAS  PubMed  Google Scholar 

  101. Laruelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab. 2000;20:423–51.

    CAS  PubMed  Google Scholar 

  102. Barendregt PJ, Visser MR, Smets EM, Tulen JH, van den Meiracker AH, Boomsma F, Markusse HM. Fatigue in primary Sjogren’s syndrome. Ann Rheum Dis. 1998;57:291–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Fishbain DA, Cutler RB, Cole B, Lewis J, Smets E, Rosomoff HL, Rosomoff RS. Are patients with chronic low back pain or chronic neck pain fatigued? Pain Med. 2004;5:187–95.

    PubMed  Google Scholar 

  104. Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, Laurent B, Garcia-Larrea L. Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain. 2007;127:183–94.

    CAS  PubMed  Google Scholar 

  105. Harris RE, Clauw DJ, Scott DJ, McLean SA, Gracely RH, Zubieta JK. Decreased central mu-opioid receptor availability in fibromyalgia. J Neurosci. 2007;27:10000–6.

    CAS  PubMed  Google Scholar 

  106. Marbach JJ, Lund P. Depression, anhedonia and anxiety in temporomandibular joint and other facial pain syndromes. Pain. 1981;11:73–84.

    CAS  PubMed  Google Scholar 

  107. Becker S, Kleinbohl D, Baus D, Holzl R. Operant learning of perceptual sensitization and habituation is impaired in fibromyalgia patients with and without irritable bowel syndrome. Pain. 2011;152:1408–17.

    PubMed  Google Scholar 

  108. Apkarian AV, Sosa Y, Krauss B, Thomas PS, Fredrickson BE, Levy RE, Harden RN, Chialvo DR. Chronic pain patients are impaired on an emotional decision-making task. Pain. 2004;108:129–36.

    PubMed  Google Scholar 

  109. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish T, Gitelman DR. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24:10410–5.

    CAS  PubMed  Google Scholar 

  110. Ozaki S, Narita M, Iino M, Sugita J, Matsumura Y, Suzuki T. Suppression of the morphine-induced rewarding effect in the rat with neuropathic pain: implication of the reduction in mu-opioid receptor functions in the ventral tegmental area. J Neurochem. 2002;82:1192–8.

    CAS  PubMed  Google Scholar 

  111. Pais-Vieira M, Mendes-Pinto MM, Lima D, Galhardo V. Cognitive impairment of prefrontal-dependent decision-making in rats after the onset of chronic pain. Neuroscience. 2009;161:671–9.

    CAS  PubMed  Google Scholar 

  112. Gimbel JS, Richards P, Portenoy RK. Controlled-release oxycodone for pain in diabetic neuropathy—a randomized controlled trial. Neurology. 2003;60:927–34.

    CAS  PubMed  Google Scholar 

  113. Raja SN, Haythornthwaite JA, Pappagallo M, Clark MR, Travison TG, Sabeen S, Royall RM, Max MB. Opioids versus antidepressants in postherpetic neuralgia—a randomized, placebo-controlled trial. Neurology. 2002;59:1015–21.

    CAS  PubMed  Google Scholar 

  114. Rowbotham MC, Twilling L, Davies PS, Reisner L, Taylor K, Mohr D. Oral opioid therapy for chronic peripheral and central neuropathic pain. N Engl J Med. 2003;348:1223–32.

    CAS  PubMed  Google Scholar 

  115. Watson CPN, Moulin D, Watt-Watson J, Gordon A, Eisenhoffer J. Controlled-release oxycodone relieves neuropathic pain: a randomized controlled trial in painful diabetic neuropathy. Pain. 2003;105:71–8.

    CAS  PubMed  Google Scholar 

  116. Moulin DE, Iezzi A, Amireh R, Sharpe WKJ, Boyd D, Merskey H. Randomised trial of oral morphine for chronic non-cancer pain. Lancet. 1996;347:143–7.

    CAS  PubMed  Google Scholar 

  117. Portenoy RK, Farrar JT, Backonja MM, Cleeland CS, Yang K, Friedman M, Colucci SV, Richards P. Long-term use of controlled-release oxycodone for noncancer pain: results of a 3-year registry study. Clin J Pain. 2007;23:287–99.

    PubMed  Google Scholar 

  118. Ballantyne JC, LaForge KS. Opioid dependence and addiction during opioid treatment of chronic pain. Pain. 2007;129:235–55.

    CAS  PubMed  Google Scholar 

  119. Sinha R. Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci. 2008;1141:105–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Koob GF, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 2001;24:97–129.

    CAS  PubMed  Google Scholar 

  121. Borsook D, Maleki N, Becerra L, McEwen B. Understanding migraine through the lens of maladaptive stress responses: a model disease of allostatic load. Neuron. 2012;73:219–34.

    CAS  PubMed  Google Scholar 

  122. Angst MS, Koppert W, Pahl I, Clark DJ, Schmelz M. Short-term infusion of the mu-opioid agonist remifentanil in humans causes hyperalgesia during withdrawal. Pain. 2003;106: 49–57.

    CAS  PubMed  Google Scholar 

  123. Guignard B, Bossard AE, Coste C, Sessler DI, Lebrault C, Alfonsi P, Fletcher D, Chauvin M. Acute opioid tolerance—intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology. 2000;93:409–17.

    CAS  PubMed  Google Scholar 

  124. Hood DD, Curry R, Eisenach JC. Intravenous remifentanil produces withdrawal hyperalgesia in volunteers with capsaicin-induced hyperalgesia. Anesth Analg. 2003;97:810–5.

    CAS  PubMed  Google Scholar 

  125. Koppert W, Sittl R, Scheuber K, Alsheimer M, Schmelz M, Schuttler J. Differential modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by S-ketamine and clonidine in humans. Anesthesiology. 2003;99:152–9.

    CAS  PubMed  Google Scholar 

  126. Stewart-Williams S, Podd J. The placebo effect: dissolving the expectancy versus conditioning debate. Psychol Bull. 2004;130:324–40.

    PubMed  Google Scholar 

  127. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma YM, Wong C. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci. 2006;26:6583–8.

    CAS  PubMed  Google Scholar 

  128. Wong DF, Kuwabara H, Schretlen DJ, Bonson KR, Zhou Y, Nandi A, Brasic JR, Kimes AS, Maris MA, Kumar A, Contoreggi C, Links J, Ernst M, Rousset O, Zukin S, Grace AA, Rohde C, Jasinski DR, Gjedde A, London ED. Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving. Neuropsychopharmacology. 2006;31:2716–27.

    CAS  PubMed  Google Scholar 

  129. Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15:37–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Martinez D, Narendran R, Foltin RW, Slifstein M, Hwang DR, Broft A, Huang YY, Cooper TB, Fischman MW, Kleber HD, Laruelle M. Amphetamine-induced dopamine release: markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. Am J Psychiatry. 2007;164:622–9.

    PubMed  Google Scholar 

  131. Volkow ND, Wang GJ, Fowler JS, Tomasi D. Addiction circuitry in the human brain. Annu Rev Pharmacol Toxicol. 2012;52:321–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Volkow ND, Wang GJ, Ma YM, Fowler JS, Wong C, Ding YS, Hitzemann R, Swanson JM, Kalivas P. Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: relevance to addiction. J Neurosci. 2005;25:3932–9.

    CAS  PubMed  Google Scholar 

  133. Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE. Acute effects of cocaine on human brain activity and emotion. Neuron. 1997;19:591–611.

    CAS  PubMed  Google Scholar 

  134. Ko CH, Liu GC, Hsiao SM, Yen JY, Yang MJ, Lin WC, Yen CF, Chen CS. Brain activities associated with gaming urge of online gaming addiction. J Psychiatr Res. 2009;43:739–47.

    PubMed  Google Scholar 

  135. Fields HL. The Doctor’s dilemma: opiate analgesics and chronic pain. Neuron. 2011;69: 591–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Navratilova E, Xie JY, Okun A, Qu C, Eyde N, Ci S, Ossipov MH, King T, Fields HL, Porreca F. Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. Proc Natl Acad Sci U S A. 2012;109:20709–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Olmstead MC, Franklin KB. The development of a conditioned place preference to morphine: effects of microinjections into various CNS sites. Behav Neurosci. 1997;111:1324–34.

    CAS  PubMed  Google Scholar 

  138. Nguyen AT, Marquez P, Hamid A, Kieffer B, Friedman TC, Lutfy K. The rewarding action of acute cocaine is reduced in beta-endorphin deficient but not in mu opioid receptor knockout mice. Eur J Pharmacol. 2012;686:50–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Suzuki T, Shiozaki Y, Masukawa Y, Misawa M, Nagase H. The role of mu- and kappa-opioid receptors in cocaine-induced conditioned place preference. Jpn J Pharmacol. 1992;58:435–42.

    CAS  PubMed  Google Scholar 

  140. McBride WJ, Murphy JM, Ikemoto S. Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res. 1999;101:129–52.

    CAS  PubMed  Google Scholar 

  141. Hall FS, Goeb M, Li XF, Sora I. Uhl GR: mu-opioid receptor knockout mice display reduced cocaine conditioned place preference but enhanced sensitization of cocaine-induced locomotion. Brain Res Mol Brain Res. 2004;121:123–30.

    CAS  PubMed  Google Scholar 

  142. Skoubis PD, Maidment NT. Blockade of ventral pallidal opioid receptors induces a conditioned place aversion and attenuates acquisition of cocaine place preference in the rat. Neuroscience. 2003;119:241–9.

    CAS  PubMed  Google Scholar 

  143. Rademacher DJ, Steinpreis RE. Effects of the selective mu(1)-opioid receptor antagonist, naloxonazine, on cocaine-induced conditioned place preference and locomotor behavior in rats. Neurosci Lett. 2002;332:159–62.

    CAS  PubMed  Google Scholar 

  144. Conrad R, Schilling G, Bausch C, Nadstawek J, Wartenberg HC, Wegener I, Geiser F, Imbierowicz K, Liedtke R. Temperament and character personality profiles and personality disorders in chronic pain patients. Pain. 2007;133:197–209.

    PubMed  Google Scholar 

  145. Wills TA, Vaccaro D, McNamara G. Novelty seeking, risk taking, and related constructs as predictors of adolescent substance use: an application of Cloninger’s theory. J Subst Abuse. 1994;6:1–20.

    CAS  PubMed  Google Scholar 

  146. Angst MS, Clark JD. Opioid-induced hyperalgesia—a qualitative systematic review. Anesthesiology. 2006;104:570–87.

    CAS  PubMed  Google Scholar 

  147. Shurman J, Koob GF, Gutstein HB. Opioids, pain, the brain, and hyperkatifeia: a framework for the rational use of opioids for Pain. Pain Med. 2010;11:1092–8.

    PubMed Central  PubMed  Google Scholar 

  148. Arntz A, Dreessen L, De Jong P. The influence of anxiety on pain: attentional and attributional mediators. Pain. 1994;56:307–14.

    CAS  PubMed  Google Scholar 

  149. Goffaux P, Michaud K, Gaudreau J, Chalaye P, Rainville P, Marchand S. Sex differences in perceived pain are affected by an anxious brain. Pain. 2011;152:2065–73.

    PubMed  Google Scholar 

  150. Kringelbach ML, Berridge KC. Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn Sci. 2009;13:479–87.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Schweinhardt M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gandhi, W., Becker, S., Schweinhardt, P. (2014). The Influence of Pain on Reward Processing: Current Literature and Prospects. In: Fairbanks, C., Martin, Ph.D., T. (eds) Neurobiological Studies of Addiction in Chronic Pain States. Contemporary Clinical Neuroscience, vol 17. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1856-0_3

Download citation

Publish with us

Policies and ethics