Advertisement

Functional Testing in the Diagnosis of Chronic Mesenteric Ischemia

  • Jihan HarkiEmail author
  • Eric T. T. L. Tjwa
  • Désirée van Noord
Chapter

Abstract

Chronic mesenteric ischemia (CMI) is a diagnostic challenge. There is no single, simple test with high sensitivity and specificity to diagnose or exclude this condition. In the previous years, functional tests such as tonometry and visible light spectroscopy (VLS) have been developed and incorporated in the standard work-up to optimize the diagnosis of CMI in patients with chronic abdominal symptoms. Both methods seem to be accurate for detection of mesenteric ischemia in combination with radiological imaging; however VLS during endoscopy is considerably more patient-friendly and less time consuming than tonometry. The current established approach for diagnosing CMI includes assessment of medical history and clinical symptoms, radiological imaging of the mesenteric arteries, and detection of mucosal ischemia by means of a functional test.

Keywords

Chronic mesenteric ischemia Diagnosis Functional testing Tonometry Gastric exercise tonometry 24-hour tonometry Visible light spectroscopy 

References

  1. 1.
    Mensink PB, van Petersen AS, Kolkman JJ, Otte JA, Huisman AB, Geelkerken RH. Gastric exercise tonometry: the key investigation in patients with suspected celiac artery compression syndrome. J Vasc Surg. 2006;44(2):277–81.PubMedCrossRefGoogle Scholar
  2. 2.
    van Noord D, Kuipers EJ, Mensink PB. Single vessel abdominal arterial disease. Best Pract Res Clin Gastroenterol. 2009;23(1):49–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Kolkman JJ, Mensink PB. Non-occlusive mesenteric ischaemia: a common disorder in gastroenterology and intensive care. Best Pract Res Clin Gastroenterol. 2003;17(3):457–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Otte JA, Geelkerken RH, Oostveen E, Mensink PB, Huisman AB, Kolkman JJ. Clinical impact of gastric exercise tonometry on diagnosis and management of chronic gastrointestinal ischemia. Clin Gastroenterol Hepatol. 2005;3(7):660–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Mensink PB, Geelkerken RH, Huisman AB, Kuipers EJ, Kolkman JJ. Twenty-four hour tonometry in patients suspected of chronic gastrointestinal ischemia. Dig Dis Sci. 2008;53(1):133–9.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Van Noord D, Sana A, Benaron DA, Pattynama PM, Verhagen HJ, Hansen BE, et al. Endoscopic visible light spectroscopy: a new, minimally invasive technique to diagnose chronic GI ischemia. Gastrointest Endosc. 2011;73(2):291–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Friedland S, Benaron D, Coogan S, Sze DY, Soetikno R. Diagnosis of chronic mesenteric ischemia by visible light spectroscopy during endoscopy. Gastrointest Endosc. 2007;65(2):294–300.PubMedCrossRefGoogle Scholar
  8. 8.
    Mensink PB, Moons LM, Kuipers EJ. Chronic gastrointestinal ischaemia: shifting paradigms. Gut. 2011;60(5):722–37.PubMedCrossRefGoogle Scholar
  9. 9.
    Kolkman JJ, Steverink PJ, Groeneveld AB, Meuwissen SG. Characteristics of time-dependent PCO2 tonometry in the normal human stomach. Br J Anaesth. 1998;81(5):669–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Kolkman JJ, Bargeman M, Huisman AB, Geelkerken RH. Diagnosis and management of splanchnic ischemia. World J Gastroenterol. 2008;14(48):7309–20.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Schlichtig R, Bowles SA. Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol. 1994;76(6):2443–51.PubMedGoogle Scholar
  12. 12.
    Aneman A, Snygg J, Pettersson A, Johansson B, Holm M, Fandriks L. Detecting gastrointestinal hypoperfusion during cardiac tamponade in pigs: a role for nitric oxide tonometry? Crit Care Med. 1998;26(7):1251–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Sato Y, Weil MH, Tang W, Sun S, Xie J, Bisera J, et al. Esophageal PCO2 as a monitor of perfusion failure during hemorrhagic shock. J Appl Physiol. 1997;82(2):558–62.PubMedGoogle Scholar
  14. 14.
    Bjorck M, Hedberg B. Early detection of major complications after abdominal aortic surgery: predictive value of sigmoid colon and gastric intramucosal pH monitoring. Br J Surg. 1994;81(1):25–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Charpentier C, Audibert G, Dousset B, Weber M, Garric J, Welfringer P, et al. Is endotoxin and cytokine release related to a decrease in gastric intramucosal pH after hemorrhagic shock? Intensive Care Med. 1997;23(10):1040–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Rune SJ. The duodenal PCO2 in duodenal ulcer patients and normal subjects. Acta Hepatogastroenterol (Stuttg). 1972;19(5):386–7.Google Scholar
  17. 17.
    Gutierrez G, Brown SD. Gastric tonometry: a new monitoring modality in the intensive care unit. J Intensive Care Med. 1995;10(1):34–44.PubMedGoogle Scholar
  18. 18.
    Fiddian-Green RG. Gastric intramucosal pH, tissue oxygenation and acid–base balance. Br J Anaesth. 1995;74(5):591–606.PubMedCrossRefGoogle Scholar
  19. 19.
    Groeneveld AB, Kolkman JJ. Splanchnic tonometry: a review of physiology, methodology, and clinical applications. J Crit Care. 1994;9(3):198–210.PubMedCrossRefGoogle Scholar
  20. 20.
    Kolkman JJ, Otte JA, Groeneveld AB. Gastrointestinal luminal PCO2 tonometry: an update on physiology, methodology and clinical applications. Br J Anaesth. 2000;84(1):74–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Haisjackl M, Birnbaum J, Redlin M, Schmutzler M, Waldenberger F, Lochs H, et al. Splanchnic oxygen transport and lactate metabolism during normothermic cardiopulmonary bypass in humans. Anesth Analg. 1998;86(1):22–7.PubMedGoogle Scholar
  22. 22.
    Fiddian-Green RG, McGough E, Pittenger G, Rothman E. Predictive value of intramural pH and other risk factors for massive bleeding from stress ulceration. Gastroenterology. 1983;85(3):613–20.PubMedGoogle Scholar
  23. 23.
    Fiddian-Green RG, Stanley JC, Nostrant T, Phillips D. Chronic gastric ischemia. A cause of abdominal pain or bleeding identified from the presence of gastric mucosal acidosis. J Cardiovasc Surg (Torino). 1989;30(5):852–9.Google Scholar
  24. 24.
    Geelkerken RH, Schultze Kool LJ, Hermans J, Zarza MT, van Bockel JH. Chronic splanchnic ischaemia: is tonometry a useful test? Eur J Surg. 1997;163(2):115–21.PubMedGoogle Scholar
  25. 25.
    Kolkman JJ, Groeneveld AB, Meuwissen SG. Effect of gastric feeding on intragastric P(CO2) tonometry in healthy volunteers. J Crit Care. 1999;14(1):34–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Kolkman JJ, Groeneveld AB, van der Berg FG, Rauwerda JA, Meuwissen SG. Increased gastric PCO2 during exercise is indicative of gastric ischaemia: a tonometric study. Gut. 1999;44(2):163–7.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Otte JA, Oostveen E, Geelkerken RH, Groeneveld AB, Kolkman JJ. Exercise induces gastric ischemia in healthy volunteers: a tonometry study. J Appl Physiol. 2001;91(2):866–71.PubMedGoogle Scholar
  28. 28.
    van Noord D, Sana A, Moons LM, Pattynama PM, Verhagen HJ, Kuipers EJ, et al. Combining radiological imaging and gastrointestinal tonometry: a minimal invasive and useful approach for the workup of chronic gastrointestinal ischemia. Eur J Gastroenterol Hepatol. 2013;25(6):719–25.PubMedCrossRefGoogle Scholar
  29. 29.
    Mensink PB, Geelkerken RH, Huisman AB, Kuipers EJ, Kolkman JJ. Effect of various test meals on gastric and jejunal carbon dioxide: A study in healthy subjects. Scand J Gastroenterol. 2006;41(11):1290–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Moneta GL, Taylor DC, Helton WS, Mulholland MW, Strandness Jr DE. Duplex ultrasound measurement of postprandial intestinal blood flow: effect of meal composition. Gastroenterology. 1988;95(5):1294–301.PubMedGoogle Scholar
  31. 31.
    Mensink PB, van Petersen AS, Geelkerken RH, Otte JA, Huisman AB, Kolkman JJ. Clinical significance of splanchnic artery stenosis. Br J Surg. 2006;93(11):1377–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Sana A, Vergouwe Y, van Noord D, Moons LM, Pattynama PM, Verhagen HJ, et al. Radiological imaging and gastrointestinal tonometry add value in diagnosis of chronic gastrointestinal ischemia. Clin Gastroenterol Hepatol. 2011;9(3):234–41.PubMedCrossRefGoogle Scholar
  33. 33.
    Cornejo A, Rodriguez T, Steigelman M, Stephenson S, Sahar D, Cohn SM, et al. The use of visible light spectroscopy to measure tissue oxygenation in free flap reconstruction. J Reconstr Microsurg. 2011;27(7):397–402.PubMedCrossRefGoogle Scholar
  34. 34.
    Karliczek A, Benaron DA, Baas PC, Zeebregts CJ, van der Stoel A, Wiggers T, et al. Intraoperative assessment of microperfusion with visible light spectroscopy in esophageal and colorectal anastomoses. Eur Surg Res. 2008;41(3):303–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Temmesfeld-Wollbruck B, Szalay A, Mayer K, Olschewski H, Seeger W, Grimminger F. Abnormalities of gastric mucosal oxygenation in septic shock: partial responsiveness to dopexamine. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1586–92.PubMedCrossRefGoogle Scholar
  36. 36.
    Maxim PG, Carson JJ, Benaron DA, Loo Jr BW, Xing L, Boyer AL, et al. Optical detection of tumors in vivo by visible light tissue oximetry. Technol Cancer Res Treat. 2005;4(3):227–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Sana A, Moons LM, Hansen BE, Dewint P, van Noord D, Mensink PBF, Kuipers EJ. Use of Visible Light Spectroscopy to Diagnose Chronic Gastrointestinal Ischemia and Predict Response to Treatment. Clin Gastroenterol Hepatol. 2014; doi:10.1016/j.cgh.2014.07.012. Epub ahead of print.Google Scholar
  38. 38.
    ter Steege RW, Kolkman JJ. Review article: the pathophysiology and management of gastrointestinal symptoms during physical exercise, and the role of splanchnic blood flow. Aliment Pharmacol Ther. 2012;35(5):516–28.Google Scholar
  39. 39.
    ter Steege RW, Kolkman JJ, Huisman AB, Geelkerken RH. [Gastrointestinal ischaemia during physical exertion as a cause of gastrointestinal symptoms] Maag-darmischemie tijdens lichamelijke inspanning als oorzaak van gastro-intestinale klachten. Ned Tijdschr Geneeskd. 2008;152(33):1805–8.Google Scholar
  40. 40.
    ter Steege RW, Herber S, Olthuis W, Bergveld P, van den Berg A, Kolkman JJ. Assessment of a new prototype hydrogel CO(2) sensor; comparison with air tonometry. J Clin Monit Comput. 2007;21(2):83–90.PubMedCrossRefGoogle Scholar
  41. 41.
    Boerma EC, van der Voort PH, Spronk PE, Ince C. Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit Care Med. 2007;35(4):1055–60.PubMedCrossRefGoogle Scholar
  42. 42.
    Fries M, Weil MH, Sun S, Huang L, Fang X, Cammarata G, et al. Increases in tissue PCO2 during circulatory shock reflect selective decreases in capillary blood flow. Crit Care Med. 2006;34(2):446–52.PubMedCrossRefGoogle Scholar
  43. 43.
    Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL. Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med. 2006;32(4):516–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Singh DB, Stansby G, Harrison DK. Assessment of oxygenation and perfusion in the tongue and oral mucosa by visible spectrophotometry and laser Doppler flowmetry in healthy subjects. Adv Exp Med Biol. 2008;614:227–33.PubMedCrossRefGoogle Scholar
  45. 45.
    van Noord D, Mensink PB, de Knegt RJ, Ouwendijk M, Francke J, van Vuuren AJ, et al. Serum markers and intestinal mucosal injury in chronic gastrointestinal ischemia. Dig Dis Sci. 2011;56(2):506–12.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Robinson JW, Mirkovitch V, Winistorfer B, Saegesser F. Response of the intestinal mucosa to ischaemia. Gut. 1981;22(6):512–27.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Hessels J, Snoeyink EJ, Platenkamp AJ, Voortman G, Steggink J, Eidhof HH. Assessment of intestinal permeability: enzymatic determination of urinary mannitol, raffinose, sucrose and lactose on Hitachi analyzer. Clin Chem Lab Med. 2003;41(1):33–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Meyers MA, Kaplowitz N, Bloom AA. Malabsorption secondary to mesenteric ischemia. Am J Roentgenol Radium Ther Nucl Med. 1973;119(2):352–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Block T, Nilsson TK, Bjorck M, Acosta S. Diagnostic accuracy of plasma biomarkers for intestinal ischaemia. Scand J Clin Lab Invest. 2008;68(3):242–8.PubMedCrossRefGoogle Scholar
  50. 50.
    El-Awady SI, El-Nagar M, El-Dakar M, Ragab M, Elnady G. Bacterial translocation in an experimental intestinal obstruction model. C-reactive protein reliability? Acta Cir Bras. 2009;24(2):98–106.PubMedCrossRefGoogle Scholar
  51. 51.
    Kurimoto Y, Kawaharada N, Ito T, Morikawa M, Higami T, Asai Y. An experimental evaluation of the lactate concentration following mesenteric ischemia. Surg Today. 2008;38(10):926–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Cronk DR, Houseworth TP, Cuadrado DG, Herbert GS, McNutt PM, Azarow KS. Intestinal fatty acid binding protein (I-FABP) for the detection of strangulated mechanical small bowel obstruction. Curr Surg. 2006;63(5):322–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Curis E, Crenn P, Cynober L. Citrulline and the gut. Curr Opin Clin Nutr Metab Care. 2007;10(5):620–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Mensink PB, Hol L, Borghuis-Koertshuis N, Geelkerken RH, Huisman AB, Doelman CJ, et al. Transient postprandial ischemia is associated with increased intestinal fatty acid binding protein in patients with chronic gastrointestinal ischemia. Eur J Gastroenterol Hepatol. 2009;21(3):278–82.PubMedCrossRefGoogle Scholar
  55. 55.
    Peters JH, Wierdsma NJ, Teerlink T, van Leeuwen PA, Mulder CJ, van Bodegraven AA. Poor diagnostic accuracy of a single fasting plasma citrulline concentration to assess intestinal energy absorption capacity. Am J Gastroenterol. 2007;102(12):2814–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Ma Y, Wang SX, Liu Y, Peng GG, Wang XM, Zhang B, et al. Single nucleotide polymorphism of CD40 in the 5'-untranslated region is associated with ischemic stroke. Gene. 2013;529(2):257–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Sun X, Lai R, Li J, Luo M, Wang Y, Sheng W. The -7351C/T polymorphism in the TPA gene and ischemic stroke risk: a meta-analysis. PLoS One. 2013;8(1):e53558.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Gu L, Wu G, Long J, Su L, Yan Y, Chen Q, et al. The role of TNF-alpha 308G > A polymorphism in the risk for ischemic stroke. Am J Med Sci. 2013;345(3):227–33.PubMedCrossRefGoogle Scholar
  59. 59.
    Cui G, Wang H, Li R, Zhang L, Li Z, Wang Y, et al. Polymorphism of tumor necrosis factor alpha (TNF-alpha) gene promoter, circulating TNF-alpha level, and cardiovascular risk factor for ischemic stroke. J Neuroinflammation. 2012;9:235.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Hansen KJ, Wilson DB, Craven TE, Pearce JD, English WP, Edwards MS, et al. Mesenteric artery disease in the elderly. J Vasc Surg. 2004;40(1):45–52.PubMedCrossRefGoogle Scholar
  61. 61.
    Cardin F, Fratta S, Inelmen EM, Sergi G, Manzato E, Terranova C. Diagnosis of chronic mesenteric ischemia in older patients: a structured review. Aging Clin Exp Res. 2012;24(6):635–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jihan Harki
    • 1
    Email author
  • Eric T. T. L. Tjwa
    • 1
  • Désirée van Noord
    • 1
  1. 1.Department of Gastroenterology and HepatologyErasmus University Medical Center RotterdamRotterdamThe Netherlands

Personalised recommendations