Skip to main content

Neuroanatomy and Neurophysiology of Pain

  • Chapter
  • First Online:
Treatment of Chronic Pain by Interventional Approaches

Abstract

The neuroanatomy and physiology of pain can be discussed with regard to every level of the nervous system, from peripheral nerve to cerebral cortex. Rudimentary nociception is the physiologic perception of a potentially tissue-damaging stimulus and is the commonplace conception that holds when one claims that “something hurts.” However, as we review here, “something hurting” for an extended period of time will induce changes in the nervous system that may be irreversible. For this reason, many experts believe that all chronic pain is, to some extent, neuropathic. This makes it often impossible to merely remove the thorn from the lion’s paw (treat a defined bodily source) and eliminate chronic pain, as much as patients wish we could. Pain as a subjective, even abstract, experience involving a complex array of emotions may occur independent of any discernable bodily tissue damage, such as the case of fibromyalgia. For this reason, most chronic pain treatments – whether it is medications, cognitive therapies, or interventional procedures – attempt to alter physiological pain processing in the peripheral nerve, spinal cord, or forebrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(699):971–9.

    Article  CAS  PubMed  Google Scholar 

  2. Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;7:309–38.

    Article  CAS  PubMed  Google Scholar 

  3. Levine JD, Fields HL, Basbaum AI. Peptides and the primary afferent nociceptor. J Neurosci. 1993;13(6):2273–86.

    CAS  PubMed  Google Scholar 

  4. Todd AJ. Chapter 6 Anatomy and neurochemistry of the dorsal horn. Handb Clin Neurol. 2006;81:61–76.

    Article  PubMed  Google Scholar 

  5. Braz JM, et al. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron. 2005;47(6):787–93.

    Article  CAS  PubMed  Google Scholar 

  6. Bielefeldt K, Christianson JA, Davis BM. Basic and clinical aspects of visceral sensation: transmission in the CNS. Neurogastroenterol Motil. 2005;17(4):488–99.

    Article  CAS  PubMed  Google Scholar 

  7. Traub RJ, Sengupta JN, Gebhart GF. Differential c-fos expression in the nucleus of the solitary tract and spinal cord following noxious gastric distention in the rat. Neuroscience. 1996;74(3):873–84.

    Article  CAS  PubMed  Google Scholar 

  8. Traub RJ, Stitt S, Gebhart GF. Attenuation of c-Fos expression in the rat lumbosacral spinal cord by morphine or tramadol following noxious colorectal distention. Brain Res. 1995;701(1–2):175–82.

    Article  CAS  PubMed  Google Scholar 

  9. Palecek J, Paleckova V, Willis WD. Fos expression in spinothalamic and postsynaptic dorsal column neurons following noxious visceral and cutaneous stimuli. Pain. 2003;104(1–2):249–57.

    Article  CAS  PubMed  Google Scholar 

  10. Devor M. Sodium channels and mechanisms of neuropathic pain. J Pain. 2006;7(1 Suppl 1):S3–12.

    Article  CAS  PubMed  Google Scholar 

  11. Momin A, Wood JN. Sensory neuron voltage-gated sodium channels as analgesic drug targets. Curr Opin Neurobiol. 2008;18(4):383–8.

    Article  CAS  PubMed  Google Scholar 

  12. Costigan M, et al. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci. 2002;3(1):16.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Weissner W, et al. Time course of substance P expression in dorsal root ganglia following complete spinal nerve transection. J Comp Neurol. 2006;497(1):78–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Devor M. Ectopic discharge in Abeta afferents as a source of neuropathic pain. Exp Brain Res. 2009;196(1):115–28.

    Article  CAS  PubMed  Google Scholar 

  15. Nakamura S, Myers RR. Myelinated afferents sprout into lamina II of L3-5 dorsal horn following chronic constriction nerve injury in rats. Brain Res. 1999;818(2):285–90.

    Article  CAS  PubMed  Google Scholar 

  16. Whiteside GT, Munglani R. Cell death in the superficial dorsal horn in a model of neuropathic pain. J Neurosci Res. 2001;64(2):168–73.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshimura M, Furue H. Mechanisms for the anti-nociceptive actions of the descending noradrenergic and serotonergic systems in the spinal cord. J Pharmacol Sci. 2006;101(2):107–17.

    Article  CAS  PubMed  Google Scholar 

  18. Lu Y, Perl ER. Selective action of noradrenaline and serotonin on neurones of the spinal superficial dorsal horn in the rat. J Physiol. 2007;582(Pt 1):127–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Benarroch E. Descending monoaminergic pain modulation: bidirectional control and clinical relevance. Neurology. 2008;71(3):217–21.

    Article  PubMed  Google Scholar 

  20. Lu Y, Perl ER. A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input. J Neurosci. 2003;23(25):8752–8.

    CAS  PubMed  Google Scholar 

  21. Braz JM, Basbaum AI. Triggering genetically-expressed transneuronal tracers by peripheral axotomy reveals convergent and segregated sensory neuron-spinal cord connectivity. Neuroscience. 2009;163(4):1220–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Moore KA, et al. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci. 2002;22(15):6724–31.

    CAS  PubMed  Google Scholar 

  23. Scholz J, et al. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci. 2005;25(32):7317–23.

    Article  CAS  PubMed  Google Scholar 

  24. Rittner HL, Brack A, Stein C. Pro-algesic versus analgesic actions of immune cells. Curr Opin Anaesthesiol. 2003;16(5):527–33.

    Article  PubMed  Google Scholar 

  25. Moalem G, Tracey DJ. Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev. 2006;51(2):240–64.

    Article  CAS  PubMed  Google Scholar 

  26. Benarroch E. Central neuron-glia interactions and neuropathic pain: overview of recent concepts and clinical implications. Neurology. 2010;75(3):273–8.

    Article  PubMed  Google Scholar 

  27. Deuchars SA, et al. GABAergic neurons in the central region of the spinal cord: a novel substrate for sympathetic inhibition. J Neurosci. 2005;25(5):1063–70.

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, et al. Tonic GABAergic inhibition of sympathetic preganglionic neurons: a novel substrate for sympathetic control. J Neurosci. 2008;28(47):12445–52.

    Article  CAS  PubMed  Google Scholar 

  29. McLachlan EM, et al. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature. 1993;363(6429):543–6.

    Article  CAS  PubMed  Google Scholar 

  30. Chung K, et al. Sympathetic sprouting in the dorsal root ganglia of the injured peripheral nerve in a rat neuropathic pain model. J Comp Neurol. 1996;376(2):241–52.

    Article  CAS  PubMed  Google Scholar 

  31. Ossipov MH, et al. Spinal and supraspinal mechanisms of neuropathic pain. Ann N Y Acad Sci. 2000;909:12–24.

    Article  CAS  PubMed  Google Scholar 

  32. Casey KL, Lorenz J, Minoshima S. Insights into the pathophysiology of neuropathic pain through functional brain imaging. Exp Neurol. 2003;184 Suppl 1:S80–8.

    Article  PubMed  Google Scholar 

  33. Garcia-Larrea L, et al. Functional imaging and neurophysiological assessment of spinal and brain therapeutic modulation in humans. Arch Med Res. 2000;31(3):248–57.

    Article  CAS  PubMed  Google Scholar 

  34. Craig AD. The functional anatomy of lamina I and its role in post-stroke central pain. Prog Brain Res. 2000;129:137–51.

    Article  CAS  PubMed  Google Scholar 

  35. Al-Khater KM, Todd AJ. Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. J Comp Neurol. 2009;515(6):629–46.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Canavero S, Bonicalzi V. Extradural cortical stimulation for central pain. Acta Neurochir Suppl. 2007;97(Pt 2):27–36.

    Article  CAS  PubMed  Google Scholar 

  37. Cruccu G, et al. EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Neurol. 2007;14(9):952–70.

    Article  CAS  PubMed  Google Scholar 

  38. Ubbink DT, Vermeulen H. Spinal cord stimulation for non-reconstructable chronic critical leg ischaemia. Cochrane Database Syst Rev. 2005;20(3):CD04001.

    Google Scholar 

  39. Oakley JC, Prager JP. Spinal cord stimulation: mechanisms of action. Spine (Phila Pa 1976). 2002;27(22):2574–83.

    Article  Google Scholar 

  40. Meyerson BA, Linderoth B. Mechanisms of spinal cord stimulation in neuropathic pain. Neurol Res. 2000;22(3):285–92.

    CAS  PubMed  Google Scholar 

  41. Slavin KV. Peripheral nerve stimulation for neuropathic pain. Neurotherapeutics. 2008;5(1):100–6.

    Article  PubMed  Google Scholar 

  42. Lipov EG. ‘Hybrid neurostimulator’: simultaneous use of spinal cord and peripheral nerve field stimulation to treat low back and leg pain. Prog Neurol Surg. 2011;24:147–55.

    Article  PubMed  Google Scholar 

  43. Falco FJ, et al. Cross talk: a new method for peripheral nerve stimulation. An observational report with cadaveric verification. Pain Physician. 2009;12(6):965–83.

    PubMed  Google Scholar 

  44. Verrills P, et al. Peripheral nerve field stimulation for chronic pain: 100 cases and review of the literature. Pain Med. 2011;3(10):1526–4637.

    Google Scholar 

  45. Mao J, et al. Neuronal apoptosis associated with morphine tolerance: evidence for an opioid-induced neurotoxic mechanism. J Neurosci. 2002;22(17):7650–61.

    CAS  PubMed  Google Scholar 

  46. Staats PS, et al. Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS: a randomized controlled trial. JAMA. 2004;291(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  47. Blankstein U, et al. Altered brain structure in irritable bowel syndrome: potential contributions of pre-existing and disease-driven factors. Gastroenterology. 2010;138(5):1783–9.

    Article  PubMed  Google Scholar 

  48. May A. Chronic pain may change the structure of the brain. Pain. 2008;137(1):7–15.

    Article  PubMed  Google Scholar 

  49. Rodriguez-Raecke R, et al. Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J Neurosci. 2009;29(44):13746–50.

    Article  CAS  PubMed  Google Scholar 

  50. Seminowicz DA, et al. Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J Neurosci. 2011;31(20):7540–50.

    Article  CAS  PubMed  Google Scholar 

  51. Kumar K, et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain. 2007;132(1–2):179–88. Epub 2007 Sep 12.

    Article  PubMed  Google Scholar 

  52. Turner JA, et al. Spinal cord stimulation for failed back surgery syndrome: outcomes in a workers’ compensation setting. Pain. 2009;148(1):14–25.

    Article  PubMed  Google Scholar 

  53. Burkey AR, Abla-Yao S. Successful treatment of central pain in a multiple sclerosis patient with epidural stimulation of the dorsal root entry zone. Pain Med. 2010;11(1):127–32.

    Article  PubMed  Google Scholar 

  54. Alo KM, et al. Lumbar and sacral nerve root stimulation (NRS) in the treatment of chronic pain: a novel anatomic approach and neurostimulation technique. Neuromodulation. 1999;2:23–31.

    Article  CAS  PubMed  Google Scholar 

  55. Alo KM, McKay E. Sacral nerve root stimulation (SNRS) for the treatment of intractable pelvic pain and motor dysfunction: a case report. Neuromodulation. 2001;4:53–8.

    Article  CAS  PubMed  Google Scholar 

  56. Yearwood TL. Neuropathic extremity pain and spinal cord stimulation. Pain Med. 2006;7 Suppl 1:S97–102.

    Article  Google Scholar 

  57. Haque R, Winfree CJ. Spinal nerve root stimulation. Neurosurg Focus. 2006;21(6):E4.

    Article  PubMed  Google Scholar 

  58. Stuart RM, Winfree CJ. Neurostimulation techniques for painful peripheral nerve disorders. Neurosurg Clin N Am. 2009;20(1):111–20, vii–viii.

    Article  PubMed  Google Scholar 

  59. Deer TR. Current and future trends in spinal cord stimulation for chronic pain. Curr Pain Headache Rep. 2001;5(6):503–9.

    Article  CAS  PubMed  Google Scholar 

  60. Tamimi MA, et al. Subcutaneous peripheral nerve stimulation treatment for chronic pelvic pain. Neuromodulation. 2008;11(4):277–81.

    Article  PubMed  Google Scholar 

  61. Weiner RL. Peripheral nerve neurostimulation. Neurosurg Clin N Am. 2003;14(3):401–8.

    Article  PubMed  Google Scholar 

  62. Weiner RL, Reed KL. Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation. 1999;2:217–21.

    Article  CAS  PubMed  Google Scholar 

  63. Oberoi J, Sampson C, Ross E. Head and neck peripheral stimulation for chronic pain: report of three cases. Neuromodulation. 2008;11(4):272–6.

    Article  PubMed  Google Scholar 

  64. Reverberi C, Bonezzi C, Demartini L. Peripheral subcutaneous neurostimulation in the management of neuropathic pain: five case reports. Neuromodulation. 2009;12(2):146–55.

    Article  PubMed  Google Scholar 

  65. Paicius RM, Bernstein CA, Lempert-Cohen C. Peripheral nerve field stimulation in chronic abdominal pain. Pain Physician. 2006;9(3):261–6.

    PubMed  Google Scholar 

  66. Jang HD, et al. Analysis of failed spinal cord stimulation trials in the treatment of intractable chronic pain. J Korean Neurosurg Soc. 2008;43(2):85–9.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Kouroukli I, et al. Peripheral subcutaneous stimulation for the treatment of intractable postherpetic neuralgia: two case reports and literature review. Pain Pract. 2009;9(3):225–9.

    Article  PubMed  Google Scholar 

  68. Baron R. Mechanisms of postherpetic neuralgia–we are hot on the scent. Pain. 2008;140(3):395–6.

    Article  PubMed  Google Scholar 

  69. Truini A, et al. Pathophysiology of pain in postherpetic neuralgia: a clinical and neurophysiological study. Pain. 2008;140(3):405–10.

    Article  CAS  PubMed  Google Scholar 

  70. Baron R, et al. A cross-sectional cohort survey in 2100 patients with painful diabetic neuropathy and postherpetic neuralgia: differences in demographic data and sensory symptoms. Pain. 2009;146(1–2):34–40.

    Article  PubMed  Google Scholar 

  71. Wu M, Linderoth B, Foreman RD. Putative mechanisms behind effects of spinal cord stimulation on vascular diseases: a review of experimental studies. Auton Neurosci. 2008;138(1–2):9–23.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Deer TR. Spinal cord stimulation for the treatment of angina and peripheral vascular disease. Curr Pain Headache Rep. 2009;13(1):18–23.

    Article  PubMed  Google Scholar 

  73. Clavo B, et al. Modification of loco-regional microenvironment in brain tumors by spinal cord stimulation. Implications for radio-chemotherapy. J Neurooncol. 2011;12:12.

    Google Scholar 

  74. Robaina F, Clavo B. Spinal cord stimulation in the treatment of post-stroke patients: current state and future directions. Acta Neurochir Suppl. 2007;97(Pt 1):277–82.

    CAS  PubMed  Google Scholar 

  75. Nauta HJ, et al. Punctate midline myelotomy for the relief of visceral cancer pain. J Neurosurg. 2000;92(2 Suppl):125–30.

    CAS  PubMed  Google Scholar 

  76. Chu LC, et al. Chronic intrathecal infusion of gabapentin prevents nerve ligation-induced pain in rats. Br J Anaesth. 2011;106(5):699–705.

    Article  CAS  PubMed  Google Scholar 

  77. Takasusuki T, Yaksh TL. The effects of intrathecal and systemic gabapentin on spinal substance P release. Anesth Analg. 2011;112(4):971–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Saulino M. Simultaneous treatment of intractable pain and spasticity: observations of combined intrathecal baclofen-morphine therapy over a 10-year clinical experience. Eur J Phys Rehabil Med. 2011;28:28.

    Google Scholar 

  79. Hutchinson MR, et al. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav Immun. 2008;22(8):1178–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Johnston IN, et al. A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J Neurosci. 2004;24(33):7353–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam R. Burkey M.D., M.S.C.E. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Academy of Pain Medicine

About this chapter

Cite this chapter

Burkey, A.R. (2015). Neuroanatomy and Neurophysiology of Pain. In: Deer, T., Leong, M., Buvanendran, A., Kim, P., Panchal, S. (eds) Treatment of Chronic Pain by Interventional Approaches. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1824-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1824-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1823-2

  • Online ISBN: 978-1-4939-1824-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics