Skip to main content

Negative Feedback Regulation in Hierarchically Organized Tissues: Exploring the Dynamics of Tissue Regeneration and the Role of Feedback Escape in Tumor Development

  • Conference paper
  • First Online:
Book cover Mathematical Models of Tumor-Immune System Dynamics

Abstract

Hierarchically organized tissues are tightly regulated to maintain homeostasis under normal conditions and promote the rapid regeneration after injury. Negative feedback from the tissue itself plays an important role in establishing this control. In particular differentiated cells emit signals that down-regulate cell division and inhibit stem cell self-renewal. The mathematical analysis of how these two feedback mechanisms affect tissue regeneration and stability can provide important insights into the dynamics of tissue regulation. This topic is also important for the study of carcinogenesis, given that cancer development requires an escape from feedback control. Here we discuss various aspects of tissue regulation and the phenotypic evolutionary pathways that lead to escape from these feedback mechanisms. Furthermore, we discuss the various tumor growth patterns that arise through different feedback inactivations. Finally, by examining published clinical data we propose that the majority of tumor growth patterns found in the literature can be classified into five categories, which by themselves could reflect the different evolutionary events that drive tumor progression in different types of stem-cell-driven cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adimy, M., Crauste, F., Ruan, S.: Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases. Bull. Math. Biol. 68, 2321–2351 (2006)

    Article  MathSciNet  Google Scholar 

  2. Alon, U.: An introduction to systems biology: design principles of biological circuits. Chapman and Hall/CRC mathematical and computational biology series, vol. 10. Chapman and Hall/CRC, Boca Raton (2007)

    Google Scholar 

  3. Andersen, L.K., Mackey, M.C.: Resonance in periodic chemotherapy: a case study of acute myelogenous leukemia. J. Theor. Biol. 209, 113–130 (2001)

    Article  Google Scholar 

  4. Arino, O., Kimmel, M.: Stability analysis of models of cell production systems. Math. Model. 7(9), 1269–1300 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ashkenazi, R., Gentry, S.N., Jackson, T.L.: Pathways to tumorigenesis–modeling mutation acquisition in stem cells and their progeny. Neoplasia 10, 1170–1182 (2008)

    Google Scholar 

  6. Bernard, S., Bélair, J., Mackey, M.C.: Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J. Theor. Biol. 223, 283–298 (2003)

    Article  Google Scholar 

  7. Bocharov, G., Quiel, J., Luzyanina, T., Alon, H., Chiglintsev, E., Chereshnev, V., Meier-Schellersheim, M., Paul, W.E., Grossman, Z.: Feedback regulation of proliferation vs. differentiation rates explains the dependence of cd4 t-cell expansion on precursor number. Proc. Natl. Acad. Sci. USA 108, 3318–3323 (2011)

    Article  Google Scholar 

  8. Bru, A., Albertos, S., Subiza, J. Garcia-Asenjo, J., Bru, I.: The universal dynamics of tumor growth. Biophys. J. 85, 2948–2961 (2003)

    Article  Google Scholar 

  9. Choe, S.C., Zhao, G., Zhao, Z., Rosenblatt, J.D., Cho, H.-M., Shin, S.-U., Johnson, N.F.: Model for in vivo progression of tumors based on co-evolving cell population and vasculature. Sci. Rep. 1, 31 (2011)

    Article  Google Scholar 

  10. Chou, C.-S., Lo, W.-C., Gokoffski, K.K., Zhang, Y.-T., Wan, F.Y.M., Lander, A.D., Calof, A.L., Nie, Q.: Spatial dynamics of multistage cell lineages in tissue stratification. Biophys J. 99, 3145–3154 (2010)

    Article  Google Scholar 

  11. Clevers, H.: The cancer stem cell: premises, promises and challenges. Nat. Med. 17, 313–319 (2011)

    Article  Google Scholar 

  12. Colijn, C., Mackey, M.C.: A mathematical model of hematopoiesis–i. periodic chronic myelogenous leukemia. J. Theor. Biol. 237, 117–132 (2005)

    Google Scholar 

  13. Daluiski, A., Engstrand, T., Bahamonde, M.E., Gamer, L.W., Agius, E., Stevenson, S.L., Cox, K., Rosen, V., Lyons, K.M.: Bone morphogenetic protein-3 is a negative regulator of bone density. Nat. Genet. 27, 84–88 (2001)

    Google Scholar 

  14. Elgjo, K., Reichelt, K.L.: Chalones: from aqueous extracts to oligopeptides. Cell Cycle 3, 1208–1211 (2004)

    Article  Google Scholar 

  15. Enderling, H., Anderson, A.R.A., Chaplain, M.A.J., Beheshti, A., Hlatky, L., Hahnfeldt, P.: Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res. 69 8814–8821 (2009)

    Article  Google Scholar 

  16. Felsher, D.W.: Cancer revoked: oncogenes as therapeutic targets. Nat. Rev. Cancer 3, 375–380 (2003)

    Article  Google Scholar 

  17. Frank, S.A., Dynamics of Cancer: Incidence, Inheritance, and Evolution. Princeton University Press, Princeton (2007)

    Google Scholar 

  18. Freyer, J.P., Sutherland, R.M.: A reduction in the in situ rates of oxygen and glucose consumption of cells in emt6/ro spheroids during growth. J. Cell Physiol. 124, 516–524 (1985)

    Article  Google Scholar 

  19. Freyer, J.P., Sutherland, R.M.: Regulation of growth saturation and development of necrosis in emt6/ro multicellular spheroids by the glucose and oxygen supply. Cancer Res. 46, 3504–3512 (1986)

    Google Scholar 

  20. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  21. Guiot, C., Degiorgis, P.G., Delsanto, P.P., Gabriele, P., Deisboeck, T.S.: Does tumor growth follow a universal law? J. Theor. Biol. 225, 147–151 (2003)

    Article  MathSciNet  Google Scholar 

  22. Hart, D., Shochat, E., Agur, Z.: The growth law of primary breast cancer as inferred from mammography screening trials data. Br. J. Cancer 78, 382–387 (1998)

    Article  Google Scholar 

  23. Johnston, M.D., Edwards, C.M., Bodmer, W.F., Maini, P.K., Chapman, S.J.: Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. Proc. Natl. Acad. Sci. USA 104, 4008–4013 (2007)

    Article  Google Scholar 

  24. Knighton, D., Ausprunk, D., Tapper, D., Folkman, J.: Avascular and vascular phases of tumour growth in the chick embryo. Br. J. Cancer 35, 347–356 (1977)

    Article  Google Scholar 

  25. Laird, A.K.: Dynamics of tumor growth. Br. J. Cancer 13, 490–502 (1964)

    Article  Google Scholar 

  26. Lander, A.D., Gokoffski, K.K., Wan, F.Y.M., Nie, Q., Calof, A.L.: Cell lineages and the logic of proliferative control. PLoS Biol. 7, e15 (2009)

    Article  Google Scholar 

  27. Lee, J., Son, M.J., Woolard, K., Donin, N.M., Li, A., Cheng, C.H., Kotliarova, S., Kotliarov, Walling, Y.J., Ahn, S., Kim, M., Totonchy, M., Cusack, T., Ene, C., Ma, H., Su, Q., Zenklusen, J.C., Zhang, W., Maric, D., Fine, H.A.: Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13, 69–80 (2008)

    Article  Google Scholar 

  28. Lim, D.A., Tramontin, A.D., Trevejo, J.M., Herrera, D.G., García-Verdugo, J.M., Alvarez-Buylla, A.: Noggin antagonizes bmp signaling to create a niche for adult neurogenesis. Neuron 28, 713–726 (2000)

    Article  Google Scholar 

  29. Mandonnet, E., Delattre, J.-Y., Tanguy, M.-L., Swanson, K.R., Carpentier, A.F., Duffau, H., Cornu, P., Van Effenterre, R., Alvord, Jr. E.C., Capelle, L.: Continuous growth of mean tumor diameter in a subset of grade ii gliomas. Ann. Neurol. 53, 524–528 (2003)

    Article  Google Scholar 

  30. Marciniak-Czochra, A., Stiehl, T., Ho, A.D., Jäger, W., Wagner, W.: Modeling of asymmetric cell division in hematopoietic stem cells–regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 18, 377–385 (2009)

    Article  Google Scholar 

  31. Marciniak-Czochra, A., Stiehl, T.: Model based parameter estimation: theory and applications. Contributions in mathematical and computational sciences. Mathematical Models of Hematopoietic Reconstitution after Stem Cell Transplantation, vol. 4, pp. 191–207. Springer, New York (2013)

    Google Scholar 

  32. Massagué, J.: Tgf? in cancer. Cell 103, 295–309 (2000)

    Article  Google Scholar 

  33. McPherron, A.C., Lawler, A.M., Lee, S.J.: Regulation of skeletal muscle mass in mice by a new tgf-beta superfamily member. Nature 387, 83–90 (1997)

    Article  Google Scholar 

  34. Meza, R., Jeon, J., Moolgavkar, S.H., Luebeck, E.G.: Age-specific incidence of cancer: Phases, transitions, and biological implications. Proc. Natl. Acad. Sci. USA 105, 16284–16289 (2008)

    Article  Google Scholar 

  35. Moolgavkar, S.H., Knudson, Jr. A.G.: Mutation and cancer: a model for human carcinogenesis. J. Natl. Cancer Inst. 66, 1037–1052 (1981)

    Google Scholar 

  36. Retsky, M.W., Swartzendruber, D.E., Wardwell, R.H., Bame, P.D.: Is gompertzian or exponential kinetics a valid description of individual human cancer growth? Med. Hypotheses 33, 95–106 (1990)

    Article  Google Scholar 

  37. Reuss, R., Ludwig, J., Shirakashi, R., Ehrhart, F., Zimmermann, H., Schneider, S., Weber, M.M., Zimmermann, U., Schneider, H., Sukhorukov, V.L.: Intracellular delivery of carbohydrates into mammalian cells through swelling-activated pathways. J. Membr. Biol. 200, 67–81 (2004)

    Article  Google Scholar 

  38. Rodriguez-Brenes, I.A., Komarova, N.L., Wodarz, D.: Evolutionary dynamics of feedback escape and the development of stem-cell-driven cancers. Proc. Natl. Acad. Sci. USA 108, 18983–18988 (2011)

    Article  Google Scholar 

  39. Rodriguez-Brenes, I.A., Wodarz, D., Komarova, N.L.: Stem cell control, oscillations, and tissue regeneration in spatial and non-spatial models. Front Oncol. 3, 82 (2013)

    Article  Google Scholar 

  40. Rodriguez-Brenes, I.A., Komarova, N.L., Wodarz, D.: Tumor growth dynamics: insights into evolutionary processes. Trends Ecol. Evol. 28, 597–604 (2013)

    Article  Google Scholar 

  41. Rodriguez-Brenes, I.A., Wodarz, D., Komarova, N.L.: Minimizing the risk of cancer: tissue architecture and cellular replication limits. J. R. Soc. Interface 10, 20130410 (2013)

    Article  Google Scholar 

  42. Rodriguez-Brenes, I.A., Komarova, N.L., Wodarz, D.: Cancer-associated mutations in healthy individuals: assessing the risk of carcinogenesis. Cancer Res. 74(6), 1661–1669 (2014)

    Article  Google Scholar 

  43. Rozenblum, E., Schutte, M., Goggins, M., Hahn, S.A., Panzer, S., Zahurak, M., Goodman, S.N., Sohn, T.A., Hruban, R.H., Yeo, C.J., Kern, S.E.: Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res. 57, 1731–1734 (1997)

    Google Scholar 

  44. Shachaf, C.M., Kopelman, A.M., Arvanitis, C., Karlsson, A., Beer, S., Mandl, S., Bachmann, M.H., Borowsky, A.D., Ruebner, B., Cardiff, R.D., Yang, Q., Bishop, J.M., Contag, C.H., Felsher, D.W.: Myc inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004)

    Article  Google Scholar 

  45. Shachaf, C.M., Felsher, D.W.: Tumor dormancy and myc inactivation: pushing cancer to the brink of normalcy. Cancer Res. 65, 4471–4474 (2005)

    Article  Google Scholar 

  46. Shackney, S.E.: A computer model for tumor growth and chemotherapy, and its application to l1210 leukemia treated with cytosine arabinoside (nsc-63878). Cancer Chemother. Rep. 54, 399–429 (1970)

    Google Scholar 

  47. Shizuru, J.A., Negrin, R.S., Weissman, I.L.: Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu. Rev. Med. 56, 509–538 (2005)

    Article  Google Scholar 

  48. Simeoni, M., Magni, P., Cammia, C., De Nicolao, G., Croci, V., Pesenti, E., Germani, M., Poggesi, I., Rocchetti, M.: Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 64, 1094–1101 (2004)

    Article  Google Scholar 

  49. Simpson-Herren, L., Lloyd, H.H.: Kinetic parameters and growth curves for experimental tumor systems. Cancer Chemother. Rep. 54,143–174 (1970)

    Google Scholar 

  50. Skipper, H.E., Schabel, Jr. F.M., Wilcox, W.S.: Experimental evaluation of potential anticancer agents. xiii. on the criteria and kinetics associated with curability of experimental leukemia. Cancer Chemother. Rep. 35, 1–111 (1964)

    Google Scholar 

  51. Spratt, J.A., von Fournier, D., Spratt, J.S., Weber, E.E.: Decelerating growth and human breast cancer. Cancer 71, 2013–2019 (1993)

    Article  Google Scholar 

  52. Steel, G.G.: Growth Kinetics of Tumours: Cell Population Kinetics in Relation to the Growth and Treatment of Cancer. Clanesdon press, Oxford (1977)

    Google Scholar 

  53. Squartini, F.: Strain differences in growth on mouse mammary tumors. J. Nat. Cancer Inst. 26, 81 (1961)

    Google Scholar 

  54. Tomlinson, I.P., Bodmer, W.F.: Failure of programmed cell death and differentiation as causes of tumors: some simple mathematical models. Proc. Natl. Acad. Sci. USA 92, 11130–11134 (1995)

    Article  Google Scholar 

  55. Tzeng, Y.-S., Li, H., Kang, Y.-L., Chen, W.-C., Cheng, W.-C., Lai, D.-M.: Loss of cxcl12/sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 117, 429–439 (2011)

    Article  Google Scholar 

  56. Weedon-Fekjaer, H., Lindqvist, B.H., Vatten, L.J., Aalen, O.O., Tretli, S.: Breast cancer tumor growth estimated through mammography screening data. Breast Cancer Res. 10(3), R41 (2008)

    Article  Google Scholar 

  57. Weinberg, R.A.: The Biology of Cancer. Garland Science, New York (2007)

    Google Scholar 

  58. Werner, B., Dingli, D., Lenaerts, T., Pacheco, J.M., Traulsen, A.: Dynamics of mutant cells in hierarchical organized tissues. PLoS Comput. Biol. 7, e1002290 (2011)

    Article  MathSciNet  Google Scholar 

  59. Woodford-Richens, K.L., Rowan, A.J., Gorman, P., Halford, S., Bicknell, D.C., Wasan, H.S., Roylance, R.R., Bodmer, W.F., Tomlinson, I.P.: Smad4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway. Proc. Natl. Acad. Sci. USA 98, 9719–9723 (2001)

    Article  Google Scholar 

  60. Wu, H.-H., Ivkovic, S., Murray, R.C., Jaramillo, S., Lyons, K.M., Johnson, J.E., Calof, A.L.: Autoregulation of neurogenesis by gdf11. Neuron 37, 197–207 (2003)

    Article  Google Scholar 

  61. Yamasaki, K., Toriu, N., Hanakawa, Y., Shirakata, Y., Sayama, K., Takayanagi, A., Ohtsubo, M., Gamou, S., Shimizu, N., Fujii, M., Miyazono, K., Hashimoto, K.: Keratinocyte growth inhibition by high-dose epidermal growth factor is mediated by transforming growth factor beta autoinduction: a negative feedback mechanism for keratinocyte growth. J. Invest. Dermatol. 120, 1030–1037 (2003)

    Article  Google Scholar 

  62. Zhang, L., Lander, A.D., Nie, Q.: A reaction-diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts. BMC Syst. Biol. 6, 93 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by NIH grant R01 CA129286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Wodarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Rodriguez-Brenes, I.A., Komarova, N.L., Wodarz, D. (2014). Negative Feedback Regulation in Hierarchically Organized Tissues: Exploring the Dynamics of Tissue Regeneration and the Role of Feedback Escape in Tumor Development. In: Eladdadi, A., Kim, P., Mallet, D. (eds) Mathematical Models of Tumor-Immune System Dynamics. Springer Proceedings in Mathematics & Statistics, vol 107. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1793-8_8

Download citation

Publish with us

Policies and ethics