Abstract
How does immunotherapy affect the evolutionary dynamics of cancer cells? Can we enhance the anti-cancer efficacy of T cells by using different types of immune boosters in combination? Bearing these questions in mind, we present a mathematical model of cancer–immune competition under immunotherapy. The model consists of a system of structured equations for the dynamics of cancer cells and activated T cells. Simulations highlight the ability of the model to reproduce the emergence of cancer immunoediting, that is, the well-documented process by which the immune system guides the somatic evolution of tumors by eliminating highly immunogenic cancer cells. Furthermore, numerical results suggest that more effective immunotherapy protocols can be designed by using therapeutic agents that boost T cell proliferation in combination with boosters of immune memory.
Keywords
- Clonal Expansion
- Center Panel
- Homeostatic Regulation
- Immune Booster
- Immune Memory
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options




References
Agliari, E., Barra, A., Guerra, F., Moauro, F.: A thermodynamical perspective of immune capabilities. J. Theor. Biol. 287, 48–63 (2010)
Brichard, V., Dréno, B., Tessier, M.H., Rankin, E., Parmiani, G., Arienti, F., Humblet, Y., Bourlond, A., Vanwijck, R., Liénard, D., Beauduin, M., Dietrich, P.Y., Russo, V., Kerger, J., Masucci, G., Jäger, E., De Greve, J., Atzpodien, J., Brasseur, F., Coulie, P.G., van der Bruggen, P., Boon, T.: Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int. J. Cancer 80, 219–230 (1999)
Bunimovich-Mendrazitsky, S., Byrne, H., Stone, L.: Mathematical model of pulsed immunotherapy for superficial bladder cancer. Bull. Math. Biol. 70, 2055–2076 (2008)
Burgess, D.J.: Tumour immunogenicity: editorial selection demystified. Nat. Rev. Cancer 12, 227 (2012)
Calvez, V., Korobeinikov, A., Maini, P.K.: Cluster formation for multi-strain infections with cross-immunity. J. Theor. Biol. 233, 75–83 (2005)
Delitala, M., Lorenzi, T.: Recognition and learning in a mathematical model for immune response against cancer. Discrete Contin. Dyn. Syst. Ser. B 18, 891–914 (2013)
De Pillis, L.G., Radunskaya, A.E., Wiseman, C.L.: A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 65, 7950–7958 (2005)
De Pillis, L.G., Mallet, D.G., Radunskaya, A.E.: Spatial tumor-immune modeling. Comput. Math. Meth. Med. 7, 159–176 (2006)
DuPage, M., Mazumdar, C., Schmidt, L.M., Cheung, A.F., Jacks, T.: Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482, 405–409 (2012)
Eftimie, R., Bramson, J.L., Earn, D.J.: Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull. Math. Biol. 73, 2–32 (2011)
Guloglu, F.B., Ellis, J.S., Wan, X., Dhakal, M., Hoeman, C.M., Cascio, J.A., Zaghouani, H.: Antigen-free adjuvant assists late effector CD4 T cells to transit to memory in lymphopenic hosts. J. Immunol. 191, 1126–1135 (2013)
Hillen, T., Enderling, H., Hahnfeld, P.: The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bull. Math. Biol. 75, 161–184 (2013)
Jäeger, E., Bernhard, H., Romero, P., Ringhoffer, M., Arand, M., Karbach, J., Ilsemann, C., Hagedorn, M., Knuth, A.: Generation of cytotoxic T-cell responses with synthetic melanoma-associated peptides in vivo: implications for tumor vaccines with melanoma-associated antigens. Int. J. Cancer 66, 162–169 (1996)
Kim, P., Lee, P., Peter, P.: Dynamics and potential impact of the immune response to chronic myelogenous leukemia. PLoS Comput. Biol. 4, e1000095 (2008)
Kim, P., Lee, P., Levy, D.: A theory of immunodominance and adaptive regulation. Bull. Math. Biol. 73, 1645–1665 (2011)
Komarova, N., Barnes, E., Klenerman, P., Wodarz, D.: Boosting immunity by anti-viral drug therapy: a simple relationship between timing, efficacy and success. Proc. Natl. Acad. Sci. 100, 1855–1860 (2008)
Kolev, M., Kozlowska, E., Lachowicz, M.: A mathematical model for single cell cancer-immune system dynamics. Math. Comput. Model. 41, 1083–1095 (2005)
Kzhyshkowska, J., Marciniak-Czochra, A., Gratchev, A.: Perspectives of mathematical modelling for understanding of macrophage function. Immunobiology 212, 813–825 (2007)
Ledzewicz, U., d’Onofrio, A., Schattler, H.: Tumor development under combination treatments with anti-angiogenic therapies. Mathematical methods and models in biomedicine. Lecture Notes on Mathematical Modelling in the Life Sciences, pp. 311–337. Springer, New York (2013)
Lollini, P.L., Palladini, A., Pappalardo, F., Motta, S.: Predictive models in tumor immunology. In: Bellomo, N., De Angelis, E. (eds.) Selected Topics in Cancer Modeling, vol. 4, pp. 363–384. Birkhäuser, Boston (2008)
Lorenzi, T., Lorz, A., Restori, G.: Asymptotic dynamics in populations structured by sensitivity to global warming and habitat shrinking. Acta Appl. Math. (2013). doi:10.1007/s10440-013-9849-9
Lorz, A., Lorenzi, T., Clairambault, J., Escargueil, A., Perthame, B.: Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors (2013, preprint)
Matzavinos, A., Chaplain, M.A.J., Kuznetsov, V.A.: Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumor. Math. Med. Biol. 21, 1–34 (2004)
Palucka, K., Banchereau, J.: Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 12, 265–277 (2012)
Perelson, A., Weisbuch, G.: Immunology for physicists. Rev. Mod. Phys. 69, 1219–1268 (1997)
Plesa, A., Ciuperca, G., Genieys, S., Louvet, V., Pujo-Menjouet, L., Dumontet, C., Volpert, V.: Diagnostics of the AML with immunophenotypical data. Math. Mod. Nat. Phen. 2, 104–123 (2006)
Ravkov, E.V., Williams, M.A.: The magnitude of CD4+ T cell recall responses is controlled by the duration of the secondary stimulus. J. Immunol. 183, 2382–2389 (2009)
Ricupito, A., Grioni, M., Calcinotto, A., Hess Michelini, R., Longhi, R., Mondino, A., Bellone, M.: Booster vaccinations against cancer are critical in prophylactic but detrimental in therapeutic settings. Cancer Res. 73, 3545–3554 (2013)
Rosenberg, S.A., Yannelli, J.R., Yang, J.C., Topalian, S.L., Schwartzentruber, D.J., Weber, S.J., Parkinson, D.R., Seipp, C.A., Einhorn, J.H., White, D.E.: Treatment of patients with metastatic melanoma with autologous tumorinfiltrating lymphocytes and interleukin 2. J. Natl. Cancer Inst. 86, 1159–1166 (1994)
Semino, C., Martini, L., Queirolo, P., Cangemi, G., Costa, R., Alloisio, A., Ferlazzo, G., Sertoli, M.R., Reali, U.M., Ratto, G.B., Melioli, G.: Adoptive immunotherapy of advanced solid tumors: an eight year clinical experience. Anticancer Res. 19, 5645–5649 (1999)
Acknowledgements
This work has been partially supported by the FIRB project—RBID08PP3J, the Fondation Sciences Mathématiques de Paris (FSMP) and by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference: ANR-10-LABX-0098).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this paper
Cite this paper
Delitala, M., Lorenzi, T., Melensi, M. (2014). A Structured Population Model of Competition Between Cancer Cells and T Cells Under Immunotherapy. In: Eladdadi, A., Kim, P., Mallet, D. (eds) Mathematical Models of Tumor-Immune System Dynamics. Springer Proceedings in Mathematics & Statistics, vol 107. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1793-8_3
Download citation
DOI: https://doi.org/10.1007/978-1-4939-1793-8_3
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-1792-1
Online ISBN: 978-1-4939-1793-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)